
97Taiwan J For Sci 35(1): 97-102, 2020

Reevaluating the Theory of Gap Dynamics Using Studies of 
Typhoon Disturbance at the Fushan Experimental Forest, 

Northeastern Taiwan

Teng-Chiu Lin,1,2)

【Summary】

The theory of gap dynamics generalizes disturbance-diversity-forest dynamics relationships 
but is hotly debated. Studies of interactions between tropical cyclones and forest dynamics at the 
Fushan Long-term Ecological Research Site in northeastern Taiwan, where typhoon disturbances 
occur on an annual basis, indicate that gaps created by disturbances do not always differ from 
the non-gap understory in important physical conditions such as light availability and variability. 
Therefore, shade-tolerant and -intolerant species can coexist in both gaps and the non-gap un-
derstory. In such forests, gaps are not indispensable for the establishment and growth of shade-
intolerant species as postulated by the theory of gap dynamics. Thus, it is important to focus on 
specific environmental conditions rather than the gap versus non-gap status when discussing gap-
biodiversity-forest dynamics relationships. In the era of climate change characterized by more-
frequent climate extremes and natural disturbances, we should move beyond generalizations and 
directly address the processes leading to the observed relationships among disturbance, diversity, 
and forest dynamics.
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學術論述

以台灣東北部福山試驗林颱風研究 

重新評估孔隙動態理論

林登秋1,2)

摘 要

孔隙動態理論為擾動、生物多樣性與森林動態之間的關係提出通則性的論述，但引起了廣泛的

爭論。在每年均有颱風擾動的台灣東北部福山長期生態研究站，對熱帶氣旋和森林動態關係的研究指

出，擾動造成的林間孔隙與非孔隙在重要的物理條件，如林下光照量與其變異程度，未必有顯著差

異。因此，耐陰和不耐陰的物種可以共存於孔隙和非孔隙的林下。在這類森林中，不耐陰樹種並非如

孔隙動態理論所假定的一定得依靠孔隙才能在林內存活和生長。在討論孔隙、生物多樣性、和森林動

態的關係時，焦點應集中在環境條件的差異而不是孔隙與非孔隙的區分。在氣候變遷使得極端氣候和

自然擾動更為頻繁的年代，更應該超越一般通則，直接探討導致吾人所觀察到的擾動、生物多樣性和

森林動態之間關係的過程。

關鍵詞：孔隙動態理論、擾動多樣性與森林動態、颱風擾動、氣候變遷、福山長期生態研究。
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INTRODUCTION
Disturbances play an important role in 

characterizing ecosystem structure, function, 
and dynamics. The spatial scale of distur-
bance effects on biodiversity ranges from 
canopy gaps caused by a tree fall to the entire 
globe caused by an asteroid impact. Large 
disturbances can reset community develop-
ment and initiate secondary succession, while 
in the absence of disturbances, a community 
will eventually reach a state in which shade-
tolerant species dominate the late succes-
sional community (Whittaker 1953, 1974, 
Horn 1974). A key discussion in disturbance 
ecology is relationships among disturbance, 
biodiversity, and ecosystem dynamics. Distur-
bances have the potential to directly alter bio-
diversity through differential species removal 
and indirectly through modifying the biotic 
and abiotic environments and thereby altering 
competition among species (Glitzenstein et 

al. 1986, Hughes et al. 2007). Many theories, 
models, and hypotheses such as the interme-
diate disturbance hypothesis (Connell 1978), 
the dynamic equilibrium model (Huston 
1979), and the theory of gap dynamics (Watt 
1947, Shugart 1984), have been developed to 
describe and predict relationships among dis-
turbance, biodiversity, and ecosystem dynam-
ics. Among them, the theory of gap dynamics 
(Watt 1947, Shugart 1984) is a fundamental 
theory in explaining interrelationships among 
disturbance, plant diversity, and forest dy-
namics. The applicability of the theory of gap 
dynamics to natural forests has been hotly 
debated. In this commentary, results of em-
pirical studies of tropical cyclone disturbance 
at the Fushan Long-term Ecological Research 
site are used to illustrate key limitations of the 
theory of gap dynamics and reveal previously 
overlooked processes that are essential to the 
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disturbance-biodiversity-forest dynamics re-
lationships.

Rethinking the theory of gap dynamics
The theory of gap dynamics emphasizes 

the role of canopy gaps created by tree-fall 
disturbances in initiating the forest cycle 
and spatial mosaics of structural phases that 
change over time (Whitmore 1989). Gaps 
are defined as openings in the forest canopy 
which help maintain species diversity through 
initiating new tree age classes and accelerat-
ing the growth of previously suppressed in-
dividuals under gaps (Whitmore 1989, Chan-
drashekara and Ramakrishnan 1994, Schnitzer 
and Carson 2001). Compared to the non-gap 
understory, light availability under canopy 
gaps is high, allowing the establishment and 
growth of shade-intolerant (or pioneer) tree 
seedlings and promoting the growth of small 
trees (Whitmore 1989). Moreover, when gaps 
are large, heterogeneity of light availability 
in gaps can be high enough to maintain the 
coexistence of shade-tolerant (late succes-
sional) and -intolerant species within the gap 
(Schnitzer and Carson 2001, McEwan et al. 
2014). Therefore, gap dynamics associated 
with small-scale tree-fall disturbances are 
considered important and even essential for 
tree recruitment and diversity, and forest re-
generation.

However, empirical studies of gap dy-
namics in relation to typhoon disturbances at 
the Fushan Long-term Ecological Research 
site indicate that the implicit fundamental 
assumption of contrasting environments be-
tween gap and non-gap sites of the theory 
of gap dynamics is circumstantial. The as-
sumption is fundamental because contrasting 
environments of gaps and non-gap microsites 
respectively favor shade-intolerant and -toler-
ant species. The effects of gaps in maintain-
ing or promoting species richness are mostly 

evident when many species establish only 
in gaps, because without gaps such species 
(mostly shade-intolerant pioneer species) can-
not persist in the forest understory. However, 
in forests with annual typhoon disturbances 
such as the Fushan forest and those in low-
elevation mountains of Taiwan, canopy gaps 
are generally small (e.g., with a mean of 
10 m2 and the largest of 36.4 m2, Yao et al. 
2015), due to the lack of many large trees and 
low typhoon-induced mortality (Mabry et al. 
1998, Lin et al. 2011), compared to mature 
temperate and tropical forests (e.g., with a 
mean of 200 m2 in many tropical forests, 
McCarthy 2001). In addition, the light avail-
ability in non-gap microsites is often > 10% 
of levels in the open due to frequent canopy 
disruptions associated with typhoons (Lin 
et al. 2003, Yao et al. 2015), compared to < 
5% in most mature tropical and temperate 
forests (Canham et al. 1990). As a result of 
substantive annual canopy disruptions, light 
availability in non-gap microsites is high and 
does not differ from that of small gaps (Yao et 
al. 2015). Therefore, shade-intolerant species 
do not require canopy gaps for regeneration. 
Trees, both shade-tolerant and -intolerant, can 
survive and grow in both gaps and in the non-
gap understory (Lin 2007), so that there are 
no significant differences in plant diversity or 
community compositions between gaps and 
non-gap microsites (Yao et al. 2015). In fact, 
at the Fushan Experimental Forest, all seed-
ling species found under canopy gaps were 
found in the forest understory, but not all 
species in the forest understory were found in 
canopy gaps (Yao et al. 2015). In this regard, 
the statement that (some) “pioneer species 
establish only in gaps” as described by Mo-
lino and Sabatier (2001) could be misleading, 
because establishment of species depends on 
the environmental conditions not the status of 
the gap versus non-gap understory.
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Frequent typhoons create gaps and ob-
scure differences between gap and non-gap mi-
crosites, so that instead of being indispensable 
for the establishment of shade-intolerant spe-
cies and contributing to overall tree diversity 
as described in the theory of gap dynamics, 
gaps may play a neutral role in plant diversity. 
Tree species do differ in their shade-tolerance, 
so that it is the availability and variability of 
light that are most important for determining 
the niches available for plants. The size and 
number of gaps could be in some cases good 
surrogates for light availability and variability, 
but that is not universal. Focusing on the surro-
gate instead of the actual factors could be mis-
leading because the validity of the surrogate is 
often conditional.

Frequent typhoon disturbances are not 
the only disturbance that can obscure the 
distinction between gap and non-gap micro-
sites. Canopy defoliation caused by insect 
outbreaks can also reduce foliar cover and 
increase canopy light penetration without 
creating “gaps”. Canopy pruning commonly 
applied in forest plantation management has 
similar effects of reducing differences be-
tween gap and non-gap microsites. Ice storms 
can cause large losses of the canopy leaf area 
index but not necessary high tree mortality 
(Rhoads et al. 2002). Tropical cyclone inten-
sity and frequency are projected to increase 
in the future (Walsh and Ryan 2000, Emanuel 
2005, 2013, Webster et al. 2005, Elsner et al. 
2008, Pun et al. 2013, Chand et al. 2017), so 
that obscured differences in gaps and non-gap 
microsites caused by frequent cyclones could 
become more common. In addition, climate 
change was suggested to have increased the 
extent and severity of insect outbreaks in 
North America (Kurz et al. 2008). Warmer 
winter temperatures in the northern hemi-
sphere were suggested as being an important 
factor associated with forest defoliation 

caused by insect outbreaks (Neuvonen et al. 
1999). These changes all have the potential to 
obscure differences in physical environments 
between gaps and non-gap microsites and in-
validate the implicit assumption of the theory 
of gap dynamics.

CONCLUSIONS

The theory of gap dynamics provides 
generalizations about disturbance-diversity-
forest dynamics relationships and is intuitive-
ly easy to comprehend. Such generalizations 
simplify the processes that lead to distur-
bance-diversity-forest dynamics relationships 
in nature. However, the real world is often 
more complicated with many surprises that 
cannot be fully understood from simplified 
generalizations. In the era of climate change 
characterized by more-frequent climate ex-
tremes and natural disturbances, we should 
move beyond generalizations and directly 
address the processes that lead to observed 
disturbance-diversity relationships.
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