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Research paper

Ectomycorrhiza Enhanced the Cold-Acclimation Growth 
and Freeze Tolerance of Scots Pine (Pinus sylvestris L.)

Burenjargal Otgonsuren,1,2)     Ming-Jen Lee 3,4)

【Summary】

Scots pine (Pinus sylvestris) is an economically important source of timber in Mongolia and 
has been widely used in reforestation programs. Our earlier study showed that Phialocephala for-
tinii was capable of forming symbiotic ectomycorrhizal associations with Scots pine seedlings. In 
this study, Phi. fortinii inoculation significantly increased the growth, biomass, and mineral (P, K, 
Ca, Mg, Na, and N) contents in roots, stems, and needles of Scots pine seedlings under normal and 
cold-acclimation conditions. Furthermore, the proline content of inoculated Scots pine seedlings 
was significantly higher than that of non-inoculated ones after hardening and cold-acclimation 
treatments.

The inoculated and non-inoculated Scots pine seedlings were cold-acclimated and subse-
quently subjected to freezing tolerance tests at -12, -14, -16, -18, and -20℃ for 7 d, and then cul-
tivated at 12±2℃ for 14 d. Values of the temperature for 50% mortality (LT50) of needles of non-
inoculated and inoculated Scots pine seedlings were -12 and -15℃, respectively. Consistently, 
respective LT50 values of seedlings of non-inoculated and inoculated pines were -14 and -18℃. In 
addition to  Phi. fortinii effectively forming ectomycorrhiza with Scots pine seedlings, this study 
demonstrated that Phi. fortinii significantly improved the growth, nutrition acquisition, proline 
content, and freeze tolerance of Scots pine.
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研究報告

外生菌根增進歐洲赤松(Pinus sylvestris)的 

冷馴化生長和耐凍性

奧特根蘇仁布倫1,2) 李明仁3,4)

摘 要

歐洲赤松(Pinus sylvestris, Scots pine)為蒙古重要的經濟用材來源，且廣泛應用於人工造林計畫。
吾等先前的研究曾證實Phialocephala fortinii可以和歐洲赤松苗木形成共生組合外生菌根。本研究顯
示，接種Phi. fortinii顯著地增進正常及冷馴化處理的歐洲赤松苗木的生長、生物量、及其根、莖、葉
中礦物質（磷、鉀、鈣、鎂、鈉、氮）的含量。此外，在健化及冷馴化處理下，接種Phi. fortinii的歐
洲赤松苗木的脯胺酸含量顯著高於未接種者。

接種及未接種的歐洲赤松苗木經冷馴化處理，隨之分別於-12、-14、-16、-18及-20℃進行耐凍
性試驗7天後，並培養於12±2℃生長箱14天。接種及未接種的歐洲赤松苗木針葉的半致死溫度分別
為-12及-15℃。相一致地，接種及未接種的歐洲赤松苗木的半致死溫度分別為-14及-18℃。結果顯示P. 
fortinii不但可以和歐洲赤松苗木形成外生菌根，並能顯著地增進其生長、養分獲得、脯胺酸含量、及
耐凍性。

關鍵詞：Phialocephala fortinii、Pinus sylvestris、外生菌根、耐凍性、脯胺酸。
奧特根蘇仁布倫、李明仁。2013。外生菌根增進歐洲赤松(Pinus sylvestris)的冷馴化生長和耐凍性。台

灣林業科學28(2):97-111。

INTRODUCTION
Scots pine (Pinus sylvestris L.) is an 

economically important source of timber in 
Mongolia and has been widely used in refor-
estation programs.

Ectomycorrhizal (ECM) fungi are func-
tionally important in temperate forest eco-
systems and play influential roles in forest 
community dynamics (Smith and Read 1997). 
Trees with well-developed ECM root tips are 
more resistant to environmental stresses such as 
drought and biotic stresses like root pathogens.

Temperature is one of the most important 
factors affecting the survival and growth of 
forest trees in Mongolia. The ability to mea-
sure cold hardiness was necessary for suc-
cessful production and establishment of forest 

tree seedlings (Warrington and Rook 1980, 
Glerum 1985). Late-spring frosts that coin-
cide with the sensitive phases of bud break in 
conifers may cause severe problems for newly 
planted seedlings (Sakai and Larcher 1987). 
Furthermore, adaptation and acclimation to 
low temperatures during autumn are impor-
tant factors affecting the survival of tree seed-
lings in Mongolia. Frost damage was reported 
in Norway spruce (Picea abies (L.) Karst.), 
when freezing temperatures (-16℃) occurred 
1 wk following spring planting in southern 
Norway (Kohmann 1991). In a study on Pin. 
sylvestris and Pic. abies seedlings, Laiho and 
Mikola (1964) reported that only a very small 
part of the mycorrhizae died during the winter 
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freeze in the nursery, and the common reason 
for death was heaving caused by ground frost, 
which physically broke the long roots. Coutts 
and Nicholl (1990) indicated that ECM root 
tips survived in microcosms over the winter, 
while Alexander and Fairley (1983) found 
that up to 75% of ECM colonization was 
retained in roots of Pic. sitchensis in a Scot-
tish plantation in September to December. In 
another study, Pisolithus tinctorius mycelium 
was shown to survive at soil temperatures of 
< 0℃ in nursery plots in the field in North 
America and subsequently colonized Pin. 
taeda seedlings (Marx and Bryan 1975).

The ability of plants to survive low tem-
peratures can be estimated by evaluating dam-
age after artificial freezing. In many direct tri-
als, whole seedlings were frozen, transferred 
to favorable conditions, and examined after 
a few days for visible signs of frost damage 
(Nilsson and Andersson 1987). Visible injury 
to needles, buds, stems, and other tissues on 
whole plants caused by controlled freez-
ing treatments can also be assessed. Several 
nondestructive methods for measuring frost 
hardiness in conifer seedlings were described, 
including changes in needle color in Scots 
pine (Toivonen et al. 1991), stem electrical 
impedance (Glerum 1973), and chlorophyll a 
fluorescence (Sundblad et al. 1990).

The aims of this study were to isolate and 
identify ECM fungi and assess the effects of 
isolated fungi on the growth and freeze toler-
ance of Mongolian pine seedlings through my-
corrhizal colonization and a freezing test. We 
expect that the findings from this study will 
contribute to application of mycorrhizal tech-
niques in the reforestation of Mongolian lands.

MATERIALS AND METHODS

Strains of mycorrhizae
Phialocephala fortinii was previously 

isolated from the roots of Scots pine from 
Bogd Mountain, Ulaanbaatar Province, 
Mongolia (107°06′65″E, 47°44′970″N, at an 
elevation of 2000 m) (Otgonsuren and Lee 
2012). The isolated endophyte was deposited 
in the Bioresource Collection and Research 
Centre (BCRC) Hsintsu, Taiwan (Phi. fortinii 
sensu lato P2, BCRC 34985). Seeds of Scots 
pine were also collected from the same site.

Seedling culture
After cleaning the surface with running 

tap water, seeds of Scots pine were sterilized 
with a 10% sodium hypochlorite solution for 
15 min, rinsed 3 times with sterile distilled 
water, and then germinated in a sterilized 
mixture of peat moss, vermiculite, and perlite 
(1: 1: 1, v/v). When the seedlings had attained 
4 cm in height, they were transferred to pots 
filled with sterilized soil for ECM infection 
and colonization.

Inoculation of mycorrhizal fungus
Scots pine seedlings were inoculated 

with the isolated fungal strain of Phi. fortinii. 
The inocula consisted of 20-mm-diameter 
fungal plugs taken from the edge of actively 
growing colonies on MMN medium in Pe-
tri dishes and maintained in an incubator at 
23±2℃ for 4 wk. All seedlings were cultured 
in a greenhouse at 20±3℃ with 1000±200 
μmole photons m-2 s-1 of photosynthetic pho-
ton flux density (PPFD), and watered with de-
ionized water as needed without supplemental 
fertilization. Seedlings were examined 6 mo 
after inoculation.

Observation of ECMs
Roots of Scots pine seedlings were sam-

pled and cleaned with water in a supersonic 
oscillator (Upson et al. 2007). The morphol-
ogy of mycorrhizae was observed with a ste-
reomicroscope (Usuki and Narisawa 2005).
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Absorbing roots were hand-sectioned 
and stained by modified methods published 
by Frohlich (1984) and Brundrett et al. (1988). 
Young absorbing roots of the pine were 
washed with running tap water to remove 
particles. Roots were placed between sheets 
of parafilm on a paraffin base and kept moist 
with water. Root tissues were cross-sectioned, 
and preserved in 50% ethanol overnight. 
Root sections were covered with 10% KOH 
for 15 min and then transferred to 3% H2O2 

for 3 min, rinsed with distilled water 3 times, 
covered with 1% HCl for 5 min, stained with 
0.01% Chlorazol black E solution in an au-
toclave for 15 min at 121℃, and mounted in 
glycerol under a cover glass. Then, the root 
tissues were examined with a stereomicro-
scope.

For light microscopy, pine roots were 
cut into small pieces, fixed in formalin: acetic 
acid: alcohol (FAA, 5: 5: 50, v/v) overnight, 
rinsed with distilled water 3 times, and de-
hydrated in 70% ethanol and a series of tert-
butyl alcohol (TBA) concentrations of 20, 35, 
55, 75, and 100%. Specimens were embed-
ded in paraffin wax (with a melting point of 
56℃). Transverse sections 10~12 μm thick 
were cut with a rotary microtome (Leica 
Reichert-Jung 820-II Histocut Microtome, 
Holly, MI, USA). Paraffin was removed with 
xylol, and sections were stained with Safranin 
and Fast green (Ruzin 1999).

For the ultrastructural study, root sam-
ples were fixed with 2.5% glutaraldehyde and 
4% paraformaldehyde fixative in a phosphate-
buffered solution (0.1 M, pH 7.0) for 4 h 
at room temperature, then rinsed with the 
phosphate-buffered solution 3 times each time 
for 15 min, followed by serial dehydration 
in 30, 50, 70, 80, 95, and 100% ethanol and 
100% acetone, and finally dried in a critical-
point dryer using liquid carbon dioxide. Dried 
materials were mounted on an aluminum stub 

with adhesives, coated with gold, and ob-
served with a Hitachi S-3500N scanning elec-
tron microscope (Tokyo, Japan) (Brundrett et 
al. 1996).

Cold acclimation
Pine seedlings of 1.5 yr old were used for 

the freeze-tolerance test, and each treatment 
included 30 pots of seedlings (with 6 seed-
lings pot-1). For non-stressed treatments, seed-
lings were inoculated with the isolated fungal 
strain (Phi. fortinii) or non-inoculated (con-
trol) and grown in a greenhouse at 20±3℃ 
until being harvested. For cold-acclimation 
treatments, seedlings were inoculated with the 
fungal strain (Phi. fortinii) or non-inoculated 
(control), hardened for 2 wk at 12℃ under a 
10-h photoperiod, and then cold-acclimated 
at 2℃ under an 8-h photoperiod for 2 wk, 
0℃ for 24 h, and 2℃ for 24 h (Pociecha et al. 
2009). Cold-acclimated seedlings were used 
for the subsequent freeze test. The growth, 
biomass, and mineral contents were measured 
after cold acclimation. The proline content 
was measured after 2 wk of hardening at 12℃ 
and 2 wk of cold acclimation at 2℃.

Assessment of the freeze tolerance
After cold acclimation, 6 seedlings in 

each treatment were subjected to a freeze test 
at -12, -14, -16, -18, and -20℃ for 7 d. Then, 
the plants were transferred to a greenhouse 
at 12±2℃ and a PPFD of 1000±200 μmole 
photons m-2 s-1, and watered with deionized 
water. The extent of frost injury was visually 
estimated by examining needles 7 d after the 
last freeze treatment. The temperature which 
damaged 50% of the needles was estimated. 
The assessment of visible frost damage on 
needles was modified from a previous study 
(Kohmann 1999) and was determined after 7 
d as follows: 0, undamaged; 1, a little needle 
browning (10%); 2, needle browning of up 
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to 30% of the needle mass; 3, needle brown-
ing of 30~40% of the needle mass; 4, needle 
browning of 50% of the needle mass; 5, nee-
dle browning of > 50% of the needle mass; 
and 6, 100% of needles dead.

The temperature causing 50% mortality 
(LT50) was determined by controlled freeze 
treatment followed by a visual rating of plant 
regrowth after 14 d at 12±2℃ (Palonen and 
Buszard 1998).

Proline analysis
The free proline content was determined 

according to Bates et al. (1973). Needle 
samples (0.5 g) from each plant were homog-
enized in 3% (w/v) sulfosalicylic acid, and 
the homogenate was filtered through filter pa-
per. After the addition of acid ninhydrin and 
glacial acetic acid, the resulting mixture was 
heated at 100℃ for 1 h in a water bath. The 
reaction was stopped by immersion in an ice 
bath. The mixture was extracted with toluene, 
and the absorbance of the fraction with tolu-
ene was aspirated from the liquid phase and 
read at 520 nm. The proline concentration 
was determined using a calibration curve and 
is expressed as parts per million (ppm).

Growth and biomass measurements
After cold acclimation, 4 plants per treat-

ment were harvested, and the height, root 
lengths, root collar diameter, fresh (FW) and 
dry weights (DW) of the needles, stems, and 
roots were determined. The DW was assessed 
after drying in an oven at 70±2℃ for 48 h.

Mineral concentration analysis
For the mineral concentration analysis, 

root, stem, and needle samples were oven-
dried at 70±2℃ and digested with concen-
trated H2SO4 and H2O2. Nitrogen contents of 
the roots, stems, and needles were estimated 
by a micro-Kjeldahl method (MacDonald 

1977). Phosphorus, potassium, calcium, sodi-
um, and magnesium contents were estimated 
by inductively coupled plasma atomic emis-
sion spectrometry.

Statistical analysis
Statistical analyses were carried out with 

the software Statistical Package for the Social 
Science (SPSS 12.0, Chicago, IL, USA) for 
Windows. All data are presented as the mean 
of 4 separate experiments±standard error (n 
= 4). Differences in growth and physiological 
characteristic rates among treatments were 
analyzed by Tukey’s multiple-range test at a p 
≤ 0.05 significance level.

RESULTS AND DISCUSSION

Morphology and ultrastructure of ECMs
At 6 mo after inoculation, ECMs had 

formed in the root systems of Scots pine 
seedlings inoculated with Phi. fortinii. The 
morphology and ultrastructure of the Scots 
pine seedling root clearly showed a mantle 
and Hartig net of ECM (Fig. 1). O’Dell et al. 
(1993) reported labyrinthine tissue (similar 
to Hartig net tissue) in roots of Pin. contorta 
when inoculated with Phi. fortinii. Fernando 
and Currah (1996) were the first to present an 
anatomical study showing that Phi. fortinii 
formed ECMs with Salix glauca in an axenic 
resynthesis experiment. In another study, Phi. 
fortinii formed typical ECM on roots of birch 
seedlings, with a complete mantle and Hartig 
net (Hashimoto and Hyakumachi 2001). In a 
recent study, roots of Pin. banksiana and Pin. 
strobes seedlings inoculated with Phi. fortinii 
showed varying amounts of surface hyphae, 
obvious Hartig nets, and some intracellular 
hyphae (Peterson et al. 2008). In contrast, no 
hyphae, mantle, or Hartig net were present in 
roots of non-inoculated pine seedlings (Fig. 
2).
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Plant growth under cold acclimation
Phialocephala fortinii inoculation treat-

ments significantly stimulated plant height, 
root collar diameter, and root length compared 

with the control in both normal and cold-
acclimation conditions (Table 1). Under cold 
acclimation, respective enhancements in plant 
height, root length, and root collar diameter 

Fig. 1. Root of Scots pine (Pinus sylvestris) seedlings inoculated with Phialocephala 
fortinii. (A) Seedling of Pin. sylvestris (bar: 1 mm); (B, C) arrows indicate the root-fungus 
association (bars: 1 mm); (D) cross-section of pine ectomycorrhizal root (M, mantle; 
arrows, Hartig net hyphae; bar: 500 μm); (E, F) root stained with safranin and fast green (M, 
mantle; arrows, Hartig net hyphae; bars: E and F, 100 μm).



103Taiwan J For Sci 28(2): 97-111, 2013

were 88, 172, and 53%. These plant growth 
characteristics decreased with cold acclima-
tion. Moreover, the FW and DW of roots, 
stems, and needles of inoculated plants were 
significantly higher than those non-inoculated 
seedlings under cold acclimation (Tables 2, 3). 
Under cold acclimation, respective increases 
in the fresh biomass of roots, stems, and nee-
dles of inoculated pine seedlings were 114, 
109, and 128%, and corresponding values in 
DWs were 197, 141, and 265%.

Our study revealed that Phi. fortinii inoc-
ulation largely promoted the growth and bio-
mass of pine seedlings under cold acclimation 
(Tables 1~3). These results agreed with pre-
vious studies showing the beneficial effects 
of Phi. fortinii of promoting the growth and 
biomass of host plants (Fernando and Currah 
1996, Jumpponen et al. 1998, Jumpponen and 

Trappe 1998, Alberton et al. 2010, Newsham 
2011). On the other hand, many studies docu-
mented the positive effects of ECM symbiosis 
on plant growth and biomass (Dixon et al. 
1983, Parke et al. 1983, Kropp et al. 1987, 
Kropp and Fortin 1988, Kropp and Langlois 
1990, Rao et. al. 1996). Similar findings were 
reported elsewhere for ponderosa pine seed-
lings (Theodorou and Bowen 1970, Le Tacon 
and Bouchard 1986, Stenstrőm 1990).

Proline concentration
The free proline concentrations of nee-

dles of both inoculated and non-inoculated 
Scots pine seedlings significantly increased 
after exposure to low temperatures (Table 4). 
Phialocephala fortinii-inoculated pine seed-
lings had significantly higher proline concen-
trations in the needles than non-inoculated 

Table 1. Growth of inoculated and non-inoculated Scots pine seedlings under cold-
acclimation treatment

Treatment Net height growth Net root length growth Net root collar diameter growth
 (cm) (cm) (mm)
P2C 20.3±1.4a 64.0±5.8a  2.9±0.1a

CC 10.8±0.1b 23.5±8.7b  1.9±0.1b

All values are the mean±standard error of 4 replicates.
Values in the same column with different superscript letters significantly differ at 5% significance 
level.
P2C, pine seedlings inoculated with Phialocephala  fortinii under cold acclimation; CC, non-inocu-
lated control seedlings under cold acclimation.

Fig. 2. Root morphology and cross-sections of non-inoculated Scots pine seedlings. (A) 
Morphology of the root (bar: 1 mm); (B) ultrastructure of the root (bar: 200 μm); (C) root 
stained with Chlorazol black E solution (CBE) (bar: 100 μm).
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ones after hardening and cold acclimation 
(Table 4). However, under normal conditions, 
there was no significant difference in proline 
concentrations between inoculated and non-
inoculated pine seedlings. Under cold ac-

climation and hardening, respective proline 
concentrations of pine seedlings inoculated 
with Phi. fortinii were 57 and 61% higher 
compared to non-inoculated pine seedlings. 
Our study indicated that the concentration of 
proline in needles of hardened non-inoculated 
pine seedlings and needles of hardened pine 
seedlings inoculated with Phi. fortinii both 
increased 3-fold after cold acclimation (Table 
4). Sagisaka and Araki (1983) reported that 
in tissues of many plant species, including 
conifers, there are seasonal changes in the 
free amino acid contents, particularly proline 
and arginine. In a study of white spruce (Pic. 
glauca) needles, the content of arginine in-
creased in late autumn and decreased in win-
ter, whereas the content of proline decreased 
during late autumn and increased in winter 
(Durzan 1968). Odlum et al. (1993) reported 
that in 5℃ treatments of black spruce seed-
lings, the shoot proline content was more than 
3-fold that observed in 25℃ treatments. In 

Table 2. Fresh biomass of inoculated and non-inoculated Scots pine seedlings under cold-
acclimation treatment

Treatment  Fresh biomass (g) 
 Roots Stems Needles
P2C 2.01±0.10a 1.78±0.26a 2.73±0.22a

CC 0.94±0.29b 0.85±0.06b 1.20±0.14b

All values are the mean±standard error of 4 replicates.
Values in the same column with different superscript letters significantly differ at the 5% significance 
level. Treatment codes are defined in Table 1.

Table 3. Dry biomass of inoculated and non-inoculated Scots pine seedlings under cold-
acclimation treatment

Treatment  Dry biomass (g) 
 Roots Stems Needles
P2C 1.10±0.12a 0.70±0.03a 1.13±0.16a

CC 0.37±0.09b 0.29±0.03b 0.31±0.06b

All values are the mean±standard error of 4 replicates.
Values in the same column with different superscript letters significantly differ at the 5% significance 
level. Treatment codes are defined in Table 1.

Table 4. Proline concentration of Scots 
pine needles under hardening and cold-
acclimation treatments
Treatment Proline concentration (ppm)
P2H 8.10±0.39c

P2C 22.96±0.54a

CH 5.02±0.77d

CC 14.64±1.86b

All values are the mean±standard error of 4 
replicates.
Values in the same column with different su-
perscript letters significantly differ at the 5% 
significance level.
P2H, Phialocephala  fortinii + hardening; P2C, 
Phi.  fortinii + cold acclimation; CH, control + 
hardening; CC, control + cold acclimation.
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contrast, elevated proline contents were corre-
lated with frost hardiness in the apple (Benko 
1968), and when proline was applied to cul-
tured maize cells, freeze damage was reduced 
(Withers and King 1979). Thus, our results 
show that low temperatures and Phi. fortinii 
inoculation which induces proline accumula-
tion significantly increased the cold tolerance 
of pine seedlings.

Mineral concentrations
Mineral concentrations in the roots, 

stems, and needles of Scots pine seedlings 
were significantly affected by Phi. fortinii in-
oculation under normal and cold-acclimation 

treatments (Tables 5~7). Concentrations of 
N, P, and K very prominently increased, and 
Ca, Mg, and Na were also elevated by Phi. 
fortinii inoculation. For example, under cold-
acclimation conditions, Ca, K, Mg, Na, and 
P concentrations in roots were respectively 
enhanced by 104, 77, 110, 37, and 150% 
(Table 5). Corresponding values of mineral 
concentrations in stems increased by 90, 75, 
90, 45, and 122%, while values of mineral 
concentrations in needle increased to 69, 92, 
68, 69, and 98%, respectively (Tables 6, 7). 
Clearly, the most significant increase was for 
phosphate, particularly in roots and stems. 
Also, nitrogen concentrations in roots, stems, 

Table 5. Nitrogen and mineral concentrations of roots of inoculated and non-inoculated 
Scots pine seedlings under cold-acclimation treatment
Treatment N (%) Ca (ppm) K (ppm) Mg (ppm) Na (ppm) P (ppm)
P2C 1.52±0.26a 898±70a 643±75a 103±21a 477±59a 4402±1007a

CC 0.57±0.21b 441±38b 364±38b 49±8b 348±47b 1758±370b

All values are the mean±standard error of 4 replicates.
Values in the same column with different superscript letters significantly differ at the 5% significance 
level. Treatment codes are defined in Table 1.

Table 6. Nitrogen and mineral concentrations of stems of inoculated and non-inoculated 
Scots pine seedlings under cold-acclimation treatment
Treatment N (%) Ca (ppm) K (ppm) Mg (ppm) Na (ppm) P (ppm)
P2C 1.16±0.28a 881±12a 780±26a 114±20a 432±46a 4291±460a

CC 0.39±0.11b 464±25b 447±28b 60±12b 299±52b 1933±34b

All values are the mean±standard error of 4 replicates.
Values in the same column with different superscript letters significantly differ at the 5% significance 
level. Treatment codes are defined in Table 1.

Table 7. Nitrogen and mineral concentrations of needles of inoculated and non-inoculated 
Scots pine seedlings under cold-acclimation treatment
Treatment N (%) Ca (ppm) K (ppm) Mg (ppm) Na (ppm) P (ppm)
P2C 1.92±0.09a 804±47a 908±70a 74±13a 423±56a 4774±418a

CC 0.76±0.26b 476±32b 472±49b 44±15b 250±5b 2411±143b

All values are the mean±standard error of 4 replicates.
Values in the same column with different superscript letters significantly differ at the 5% significance 
level. Treatment codes are defined in Table 1.
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and needles were significantly (p = 0.05) 
higher in Phi. fortinii-inoculated Scots pine 
seedlings than the controls (Tables 5~7), with 
respective enhancements being 167, 197, and 
153% after cold acclimation.

In the present study, Phi. fortinii inocula-
tion was found to significantly increase the 
acquisition of nitrogen (N) and minerals (P, K, 
Ca, Mg, and Na) in roots, stems, and needles 
of Scots pine seedlings under normal and cold 
acclimation (Tables 5~7). Presumably, the 
increased uptake of minerals stimulated the 
growth of the test plants (Table 1). Previous 
studies showed that beneficial effects of Phi. 
fortinii inoculation included improved nutri-
ent uptake of the host plant, especially N and 
phosphorus (P) (Stoyke et al. 1992, Newsham 
1999, 2011, Addy et al. 2005, Mandyam and 
Jumpponen 2005, Grünig et al. 2008, Peter-
son et al. 2008, Smith and Read 2008, Upson 
et al. 2009). Furthermore, many studies docu-
mented the effects of ECM colonization on 
plant growth and nutrient uptake, especially 
N and P (Harley and Smith 1983, Nelsen 
1987, Read et al. 1989, Sarjala and Potila 
2005). Lee (1990) reported that ECMs could 
play an important role in successful establish-
ment of seedlings by increasing nutrient and 
water uptake by plants and their resistance to 
environmental stress. Our results confirm the 
significant effects of ECM on the nutritional 
status of Scots pine seedlings. 

Freeze tolerance of Scots pine seedlings
Analysis of freeze tolerance revealed that 

needle mortality of non-inoculated Scots pine 
seedlings was significantly higher than that 
of inoculated ones; the needle LT50 of non-
inoculated pine seedlings was -12℃, whereas 
the needle LT50 of inoculated ones was lower 
at -15℃ (Fig. 3A). Under sunlight, freeze-
injured needles of Scots pine seedlings turned 
brown followed by desiccation. Needles of 

non-inoculated Scots pine seedlings were 
more sensitive than inoculated ones, whereas 
needles of inoculated pine seedlings were 
more tolerant to freezing than were non-
inoculated ones (Fig. 3A).

The whole-plant mortality of non-inoc-
ulated pine seedlings was also significantly 
higher than that of inoculated ones; the plant 
LT50 of non-inoculated Scots pine seedlings 
was -14℃, while that of the inoculated ones 
was -18℃ (Fig. 3B).

For seedling regrowth after freezing 
treatment, inoculated Scots pine seedlings 
exhibited a higher freeze tolerance than the 
controls (Fig. 3). For example, after 7 d at 
-14℃, respective mortality rates for inocu-
lated and non-inoculated Scots pine seedlings 
were 16.7±4.1 and 50.0±5.5%, representing 
an almost 3-fold increase in cold tolerance 
(Fig. 3). In this study, proline concentrations 
changed after hardening and cold acclima-
tion, which points to the importance of this 
period for acquiring frost tolerance. On the 
other hand, some studies showed the benefits 
of improved mineral nutrition on cold hardi-
ness. Timmis (1974) reported that Douglas-
fir seedlings with low foliar N content (of 
0.8%) had an LT50 of -13℃, and those with 
a higher content (of 1.6%) had an LT50 of 
-30℃. Gleason et al. (1990) showed that fall-
fertilized ponderosa pine seedlings with an N 
content of 1.55% were more cold-hardy than 
control seedlings with 1.47% N. Fernandez 
et al. (2007) observed that N-fertilized plants 
with > 1.25% N better tolerated freezing than 
those that had < 1%. In another study, Pic. 
abies seedlings with poor autumn cold hardi-
ness had lower (of 1.1%) compared to higher 
(of > 1.6%) foliar N contents (Luoranen et 
al. 2008). Also, Islam et al. (2009) showed 
that an increased fertilizer rate improved 
mineral nutrition (higher shoot N concentra-
tions), and this was associated with greater 
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cold hardiness after the first growing season 
of Pin. resinosa seedlings. Also, our results 
showed that high N concentrations of Scots 
pine seedlings inoculated with ECM im-
proved the freeze tolerance of pine seedlings 
(Tables 5~7). Overall, these results dem-
onstrated that inoculation with ECM could 
improve the freeze tolerance of Scots pine 
seedlings.

CONCLUSIONS

In this study, Phi. fortinii effectively 
formed ECM in roots of pine seedlings. Phia-
locephala fortinii inoculation significantly 
promoted the growth and biomass accumula-
tion of Scots pine seedlings. The enhance-
ment in growth was reflected in increased 
plant height, root length, and net root collar 
diameter growth of Phi. fortinii-inoculated 
Scots pine seedlings. Phialocephala fortinii 
inoculation also significantly increased the 
nitrogen and mineral (P, K, Ca, Mg, and Na) 
contents in all tissues of Scots pine seedlings. 
Clearly, enhanced acquisition of P through 
ECM could stimulate root growth and subse-
quently promote absorption of other minerals 

and N to substantiate the higher growth rate 
and freeze tolerance. Furthermore, our results 
show that low temperatures and Phi. fortinii 
inoculation which induce proline accumula-
tion increased the freeze tolerance of Scots 
pine seedlings. The needle and plant LT50 
values of the inoculated Scots pine seedlings 
were significantly higher than those of non-
inoculated plants. Inoculated Scots pine seed-
lings exhibited total survival at temperatures 
of as low as -18℃, while only 50% of non-
inoculated seedlings survived at this freezing 
temperature. These results clearly demon-
strated that Phi. fortinii could effectively form 
ECM with Scots pine seedlings and improve 
its growth and freeze tolerance.
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