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Using Small-Footprint and Multiple-Return LiDAR Data to 
Characterize and Classify Four Temperate Forest  

Cover Types

Yi-Ta Hsieh,1)     Chaur-Tzuhn Chen,2)     Shou-Tsung Wu3,4)

【Summary】

The information of the foliage cover and the distribution of branches are essential sources for 
understanding the spatial variability of the vertical forest structure. But it is difficult to use traditional 
research methods, such as doing field surveys and interpreting aerial photographs, to obtain related 
information on the vertical forest structure and conditions below the canopy. Therefore, this study 
attempted to evaluate the possibilities of using airborne LiDAR data to examine the forest vertical 
structure below the canopy, and utilize LiDAR data to classify land cover types in mountain areas. 
Red cypress (Chamaecyparis formosensis), Sugi (Cryptomeria japonica), mixed hardwoods, and 
bare land were the 4 categories analyzed in the investigated area, the Alishan region of central Tai-
wan. The analytical methods were based on LiDAR multiple-return and intensity data, and statisti-
cal analyses and image classification were used to describe the diversities of the investigated land 
types. The ratio of echo model (REM) and echo intensity model (EIM) were effective in distin-
guishing the divergences of different land types. Results of this study demonstrated the proportion 
of echo return and intensity data related to the canopy density. Among the types of test echoes used 
in the study, plentiful information for land cover classification using both the ratio of echo returns 
and the intensity of echoes was acquired from the first echo returns. The results of applying single-
image classification showed a classification accuracy of 50.5~68.5%. The EIMFE, REMFE, REMLE, 
and REMOE showed a higher potential for classifying land types. The classification results of stack 
images indicated that combining more LiDAR-derived variables yielded a more-accurate classifi-
cation accuracy (81.5%). This study corroborates the high feasibility for mapping land cover types 
using LiDAR multiple-return and intensity data.
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研究報告

小覆蓋面多重回波光達資料應用於四個溫帶森林 

覆蓋類型之特徵與分類探討

謝依達1) 陳朝圳2) 吳守從3,4)

摘 要

樹葉覆蓋與枝條分佈的資訊為理解森林垂直結構空間變異的基本要素，然而透過傳統的田野調查

研究或航空照片判釋，卻很難有效獲取森林垂直結構與冠層以下的相關資訊；因此，本研究旨在評估

利用空載光達資料探討冠層下森林垂直結構的可行性，並進行山區森林植群分類。本研究以阿里山地

區為範圍，其內計有紅檜(Chamaecyparis formosensis)、柳杉(Cryptomeria japonica)、闊葉樹混淆林與
裸露地等四種類型，因此透過空載光達多重回波與強度值資料，結合統計分析與影像分類探討其差異

性。研究指出，回波比率模型(REM)與回波強度模型(EIM)能有效區分土地利用類型的不同，同時證明
回波比率與強度和林分冠層密度具有相關性，其中第一回波的回波比率與強度值最能充分反應冠層資

訊。至於影像分類方面，單一影像的分類準確度介於50.5至68.5%之間，且第一回波強度(EIMFE)、第
一回波比率(REMFE)、最終回波比率(REMLE)與單一回波比率(REMOE)具有較高的分類潛力；不過融合
較多變數的混合影像，其分類準確度更高，達81.5%。因此本研究證實，透過空載光達的多重回波與

強度值資料，確可有效進行土地覆蓋類型的分類與製圖工作。

關鍵詞：空載光達、多重回波、強度值、分類。

謝依達、陳朝圳、吳守從。2014。小覆蓋面多重回波光達資料應用於四個溫帶森林覆蓋類型之特徵與
分類探討。台灣林業科學29(1):53-68。

INTRODUCTION
The information embedded in the foliage 

cover and the distribution of branches are es-
sential sources for understanding the spatial 
variability of the vertical forest structure. 
Various tree species and forest types lead to 
complicated and diverse vertical character-
istics of forest structure, and it is difficult to 
apply traditional research methods, such as 
doing field surveys and interpreting aerial 
photographs, to obtain related information 
on the vertical forest structure and conditions 
below the canopy. Fortunately over the past 
decade, remote sensing techniques, such as 
LiDAR, have rapidly become popularly used 
as tools for extracting 3-dimensional (3D) 

forest information.
Airborne laser scanning (ALS), also 

termed airborne LiDAR (light detection and 
ranging), is one of many laser remote-sensing 
techniques (Raymond 1992) that direct a 
near infrared laser pulse downwards towards 
the earth’s surface (Lefsky et al. 2002), and 
measure the return time of each beam trav-
eling between the sensor and a target using 
ultra-accurate clocks (Suarez et al. 2005). 
LiDAR can provide 3D information for the 
highly automated generation of digital el-
evation models (DEMs), and some studies 
also showed the potential of LiDAR data to 
derive forest variables (such as stand height, 
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basal area, stem volume, and biomass) (Nils-
son 1996, Næsset 1997a, b, 2002, Lefsky 
et al. 1999, Means et al. 2000, Zimble et al. 
2003, Maltamo et al. 2004). In fact, LiDAR-
measured forest structural attributes were of-
ten based on a LiDAR-derived canopy height 
model (CHM) with ground survey data using 
a regression analysis (e.g., k-MSN regression, 
SVM-regression, or k-NN classification) to 
build regression models.

The small-footprint LiDAR emits a 
small beam of light, and most small-footprint 
LiDAR systems have the feature of multiple-
return that is capable of recording the discrete 
return (the laser pulse return also referred to 
as the “echo”). The characteristic of multiple-
returns often occurs in forest land, because 
the emitted laser light can pass through veg-
etation, and it carries a lot of information 
about the forest’s internal structures. The dis-
tribution of laser echoes in a tree is the result 
of the canopy density, tree shape, and foliage 
distribution (Ørka et al. 2007). Some studies 
applied the LiDAR multiple-return character 
to obtain important information on the veg-
etation density and structure. Morsdorf et al. 
(2006) estimated the leaf area index (LAI) ac-
cording to the first, last, and only echo data of 
LiDAR. Holmgren and Persson (2004) identi-
fied individual tree species by analyzing the 
proportion of returning data that contained 
the ratio of only returns and the ratio of first 
returns. Donoghue et al. (2007) used the pro-
portion of ground return data to classify tree 
species. Takahashi et al. (2006) demonstrated 
that the rate of LiDAR-derived laser penetra-
tion, calculated by multiple-return characters, 
between Hinoki cypress (Chamaecyparis ob-
tusa) and Sugi (Cryptomeria japonica) stands 
significantly differed. Different forest types 
would lead different laser penetrations, which 
may be caused by different leaf branches, tree 
shapes, and canopy densities. Using those 

characters can help classify different forest 
types. Many novel systems of small-footprint 
LiDAR can also obtain data on the intensity 
of each return, which is defined as the ratio 
of the strength of the reflected light. The Li-
DAR intensity is influenced by the reflectance 
of the reflecting object and materials with 
different reflectance properties (Song et al. 
2002). The intensity of the return (which has 
no units) provides useful information on the 
characteristics of pseudo near-infrared reflec-
tance from objects (Wehr and Lohr 1999). 
Early on, Schreier et al. (1985) found that 
the LiDAR intensity afforded information of 
vegetation density and vegetation type, and 
the mean intensity and intensity variability 
measured by LiDAR systems could be used 
to identify coniferous and deciduous trees. 
In recent years, quite a few researchers have 
employed intensity data to identify tree spe-
cies (Holmgren and Persson 2004, Moffiet et 
al. 2005, Donoghue et al. 2007, Ørka et al. 
2007), classify urban land-use (Song et al. 
2002, Bartels and Wei 2006), and recognize 
glacier surfaces (Höfle et al. 2007). Dono-
ghue et al. (2007) used the different intensity 
data on the 25th, 50th, 75th and 90th tree height 
percentiles to identify tree species mixtures 
in conifer plantations. Donoghue et al. (2007) 
also noted that higher-intensity percentiles 
provided a measure of reflectivity of the for-
est canopy, while lower-intensity percentiles 
provided a measure of woody material. Ørka 
et al. (2007) used the intensity of the mean 
and standard deviation among first, last, and 
only echo data for tree species classification.

This study focuses on describing forest 
structures in different forest types using Li-
DAR multiple-return and intensity data. We 
employed the intensity data and return pro-
portions from different echo types, and differ-
ent echo types were reflected within different 
tree layers. For this reason, the echo intensity 
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and return proportion were expected to pro-
vide higher variability among forest types.

MATERIALS AND METHODS

Study area
The investigated area of this study was 

located within the Alishan National Scenic 
Area, the most popular tourist resort in central 
Taiwan (Fig. 1). It covers 788.4 ha, and its 
landscape is characterized as alpine terrain. 
The elevation within this investigated area 
ranges 1438~2421 m. The most common for-
est types in this area are Chamaecyparis for-
mosensis (red cypress), Cryptomeria japonica 
(Sugi) stand plantations, and natural forests of 
mixed hardwoods.

LiDAR data
The airborne LiDAR data used in this re-

search were collected from flights organized 
by the Industrial Technology Research In-

stitute (Hsinchu, Taiwan). LiDAR data were 
acquired in June 2006 using the Leica ALS50 
system (Leica, Wetzlar, Germany), operated 
from an airplane at a flight altitude of 3000 m 
above sea level with an average speed of 110 
knots, and with a point density of 2~4 points 
m-2. There were 10 east-west flight lines cov-
ering the surveyed area, and adjacent flight 
lines had a side-overlap of approximately 
40%. The field of view (FOV) was 50˚ for the 
LiDAR data. Four types of return point cloud 
data (first, second, last, and only echoes) were 
recorded by the Leica ALS50 system (Table 
1). Like most discrete return data of LiDAR 
systems, the Leica ALS50 also records the 
intensity of each pulse in the near infrared at 
a1064-nm wavelength.

Reference data
Aerial photographs

Aerial photographs were simultaneously 
collected together with LiDAR data using 

Fig. 1. Aerial photograph of the investigated area (in central Taiwan) for this study.
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a Leica ADS40 airborne digital sensor. The 
aerial photographs were used to validate the 
forest species composition and had a spatial 
resolution of 0.5 m.

Land use map
A land-use map was also utilized in this 

study as an auxiliary tool to help interpret 
the aerial photos. The land-use map was part 
of the Third Forest Resources and Land Use 
Inventory in Taiwan (by the Forestry Bureau, 
Taipei, Taiwan). However, this map was 
sketched in 1989~1993, and some changes in 
land cover could have occurred since then.

Methods
Definition of forest types

Before analyzing the LiDAR variables 
for each forest type, it was necessary to recog-
nize the main forest types in the research area 
to facilitate further data extraction and analy-
sis. Four major land types were recognized 
in the area according to the land-use map and 
through interpretation of aerial photographs: 
red cypress (Chamaecyparis formosensis), 
sugi (Cry. japonica), mixed hardwoods (Ne-
olitsea acuminatissma, Trochodendron aral-
ioides, Illicium tashiroi, etc.), and bare land. 
The standard of interpreting samples, outlined 
as optical differences in land types, is dem-
onstrated in Fig. 2, with views at a scale 1: 
1000. The definition of the crown typology 
for analyzing aerial photos is also indicated in 
Table 2.

Side views of laser-point distributions 
with a 10-m depth for each land type are 

shown on the right side of Fig. 2, and the point 
clouds were colored by echo types. Distribu-
tions of laser points greatly differed accord-
ing to land types and tree shapes (Fig. 2b, d, 
f). The laser points showed a higher ratio of 
the only echo in Sugi than in red cypress and 
mixed hardwoods. Otherwise, mixed hard-
woods had a higher ratio of the multiple return. 
Bare land just had the only echo (Fig. 2h).

LiDAR data pre-processing
One of the objectives of this study was 

to classify forest types using LiDAR data, 
so the first step was to remove unreasonable 
points from the LiDAR data using Terra-Scan 
software (Terrasolid). Unreasonable points 
included those that were too low or too high, 
so nominal land surface and cloud data points 
were excluded.

Information from laser points included 
x, y, and z coordinates, intensity, and echo-
type data. The echo type was analyzed in this 
study for forest type classification.

Derivation of LiDAR variables
Two kinds of datasets were used to ana-

lyze the different forest types: the ratio of 
echo model (REM) and echo intensity model 
(EIM).

REM
The REM in this study is defined as the 

percentage of each LiDAR hit of echo types 
compared to the total LiDAR hits. Accord-
ing to Peng et al. (2008) and the mosaic of 
vegetation types, the REM was extracted at 
a 20-m resolution. Ratios of the first, second, 
last, and only echo numbers were calculated, 
and ratios of echo types were computed ac-
cording to Eq. (1) (Moffiet et al. 2005), and 
its output is illustrated in Fig. 3:

REM 
FE, SE, LE, OE =  (1)

Table 1. Definitions of echo types
 Echo type Definition
First echo First return of multiple-returns
Second echo Second return of multiple-returns
Last echo Last return of multiple-returns
Only echo Single return
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Fig. 2. Four forest cover types in the study area. Aerial photographs of each land type at a 
scale of 1: 1000 (left), side views of distributions of laser points with a 10-m depth for each 
land type (right). (a) and (b), red cypress; (c) and (d), Sugi; (e) and (f), mixed hardwoods; (g) 
and (h), bare land.

Where REM is the ratio of echo model, N is 
the number of echo hits, and the subscripts 
FE, SE, LE, OE, and All denote the first echo, second 
echo, last echo, only echo, and all echo, re-
spectively.

EIM
The EIM indicates the LiDAR intensity 

data for each echo type, and is constructed 
using the average value of the LiDAR hit 
intensity at a 20-m resolution (Peng et al. 

Table 2. Definitions of crown typology for interpreting aerial photos
Land cover type Definition
Red cypress Larger tree crown size, round crown contour, and rounded curvature of the crown
 surface 
Sugi Smaller tree crown size, and dotted regular distribution
Mixed hardwoods Contained many kinds of tree species, large tree crown sizes, and crown contours 
 generally irregular
Bare land Non-forest land type that contained buildings, roads, riverbeds, and landslide areas
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2008). The mean intensities of the first, sec-
ond, last, and only echoes within a pixel were 
used in this study. The ratio of echo type was 
computed according to Eq. (2) (Moffiet et al. 
2005), and its output is illustrated in Fig. 4:

EIM FE, SE, LE, OE, All =  (2)

Where EIM is the echo intensity model (it is 
the average value of intensity in each raster), 
and the symbol I is the intensity value.

According to Peng et al. (2008), the 
20-m spatial resolution was considered to 
represent more-complete stand characteris-
tics. All of these data above were converted 
into a raster format with the same 20×20-m 
cell size. This research recognized the density 
of the laser point (2.62 points m-2) from this 
LiDAR data. On average, there were 1048 
LiDAR points for each 20×20-m cell; there-
fore, a suitable resolution was obtained.

Training data evaluation
In order to compare how variables re-

sponded among the 4 land cover types, train-
ing data were selected by interpreting aerial 
photographs and the land-use map for each 
land type (the standard of interpreting data is 
demonstrated in Table 2). Training data (43 
training polygons) were used to analyze each 
variable in this study (Table 3).

First of all, the transformed divergence 
(TD) was used to analyze the separability of 

Fig. 3. Ratio of echo model (REM). (a) REMFE, ratio of first echo model; (b) REMSE, ratio 
of second echo model; (c) REMLE, ratio of last echo model; (d) REMOE, ratio of only echo 
model.

Fig. 4. Echo intensity model (EIM). (a) EIMAll, all echo intensity model; (b) EIMLE, last 
echo intensity model; (c) EIMSE, second echo intensity model; (d) EIMFE, first echo intensity 
model; (e) EIMOE, only echo intensity model.

Table 3. Numbers of training samples for 
each type

Land cover type No. of training samples 
 (no. of pixels)
Red cypress 10 (101)
Sugi 13 (250)
Mixed hardwoods 10 (181)
Bare land 10 (112)
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the training data (Eq. 3), and the scale of TD 
values can range 0~2000. If the result is > 
1900, then the classes can be separated. Be-
tween 1700 and 1900, the separation is fairly 
good. Below 1700, the separation is poor 
(Jensen 1996).

Dij =  tr [(ci - cj)(ci
-1 - cj

-1)] +  tr [(ci
-1 - cj

-1)

(ui - uj)(ui - uj)
T]

TDij = 2000[1 - exp( )] (3)

Where i and j are the 2 signatures (classes) 
being compared, Ci is the covariance ma-
trix of signature i, μi is the mean vector of 
signature i, tr is the trace function, and T is 
the transposition function.

A one-way analysis of variance (ANO-
VA) was also used to analyze the training 
data of the REM and EIM. The test hypoth-
eses were: H0 (there was no difference in 
those variables among the 4 land types) and 
H1 (there were differences in those variables 
among the 4 land types). The significance 
level was set to 5%. In order to test the sig-
nificance of each land cover type, Duncan’s 
multiple-range test of significance and cor-
relation was calculated in a post-hoc analysis. 
The results are useful in determining which 
variable provides better separability of forest 
structure and forest types.

LiDAR image classification
Two kinds of data formats were used in 

this study for further classifications.
Single image: There were 9 LiDAR 

variable images (4 REM images and 5 EIM 
images) that were separately used for further 
classification. The aim of this process was to 
compare the classification accuracy between 
these LiDAR variables and understand the 
most important factor in those variables for 
land type classification.

Stack image: Stack images were used 

to collect REM and EIM images, and pro-
duced a 9-band stacked image. The aim of 
this process was to test this fusion approach 
by mixing all of the variables to obtain more-
complete information for classification.

LiDAR single images and stack images 
were then classified using a supervised clas-
sification approach: maximum likelihood clas-
sifier (MLC). All processes of classification 
were carried out using the same training data 
(Table 3) in order to lead to more-impartial re-
sults of classification for comparison with each 
other. Image processing was carried out using 
ERDAS IMAGINE 9.1 software (ERDAS).

Accuracy and field validation of the as-
sessment

After classifying the images, the re-
searchers assessed the accuracy of the classi-
fication. Because the aerial photographs were 
taken together with the LiDAR data, there 
was no time to delay between the 2 data. In 
the study, 200 check points were selected 
at random and interpreted using aerial pho-
tographs, and uncertain sample points were 
inventoried by field validation in winter 2007. 
Then the samples points were used to calcu-
late an error matrix. In addition, the overall 
accuracy of classification, and the producer’s 
and user’s accuracies were also determined 
through Kappa statistics.

RESULTS AND DISCUSSION

Descriptions of LiDAR variables among 
different land cover types
The description from the REM

Among 3 classes of forest types from the 
REM, the REMFE, REMSE, and REMLE showed 
higher mean values of fraction in red cypress 
(0.224, 0.042, and 0.229) and mixed hard-
woods (0.245, 0.038, and 0.245) than in Sugi 
(0.168, 0.022, and 0.172, respectively). How-
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ever, the REMOE showed a higher mean value 
of fraction in Sugi (0.639) than in red cypress 
(0.506) and mixed hardwoods (0.473) (Table 
4). This outcome indicates that Sugi yielded 
a lower percentage of multiple-returns than 
red cypress and mixed hardwoods, and Sugi 
provided a higher percentage of single returns. 
It demonstrates that the permeability of the 
canopy cover of Sugi is low. Hence Sugi has 
a relatively dense canopy cover structure.

The bare land class showed somewhat 
lower mean values of fractions in REMFE, 
REMSE, and REMLE (0.008, 0, and 0.008, 
respectively), but a higher fraction in REMOE 
(0.984) (Table 4). This result indictes that 
bare land did not provide multiple-returns. 
These data showed a distinct difference from 
other classes.

The description from the EIM
Among the EIMs with 3 classes of forest 

types, the EIMAll, EIMFE, EIMSE, EIMLE, and 

EIMOE showed higher intensity mean values 
for red cypress and Sugi than for mixed hard-
woods (Table 5). Differences in mean values 
of intensity among red cypress, Sugi, and 
mixed hardwoods were supported by Schreier 
et al. (1985): the mean value of the laser 
intensity could be differentiated between co-
niferous and broadleaf trees. In this study, red 
cypress and Sugi are coniferous trees, while 
mixed hardwoods are broadleaf trees.

The EIMAll, EIMFE, EIMSE, EIMLE, and 
EIMOE showed higher-intensity DN values in 
red cypress than in Sugi. But the intensities 
of the DN values of those variables for red 
cypress were relatively closer to those of Sugi 
than to mixed hardwoods. This similarity may 
have been caused by the 2 forest types being 
coniferous trees, and their foliage shapes both 
being acerate.

In this study, vegetation classes showed 
higher-intensity DN values than bare land. 
The same finding was also reported by studies 

Table 4. Descriptive statistics (mean and standard deviation) of the ratio of echo model 
(REM) for different land cover types

LiDAR-derived variable Mean (standard deviation)
 Red cypress Sugi Mixed hardwoods Bare land
REMFE 0.224 (0.055) 0.168 (0.032) 0.245 (0.061) 0.008 (0.014)
REMSE 0.042 (0.021) 0.022 (0.010) 0.038 (0.020) 0 (0)
REMLE 0.229 (0.060) 0.172 (0.039) 0.245 (0.064) 0.008 (0.014)
REMOE 0.506 (0.125) 0.639 (0.071) 0.473 (0.135) 0.984 (0.028)
FE, first echo; SE, second echo; LE, last echo; OE, only echo.

Table 5. Descriptive statistics (mean and standard deviation) of the echo intensity model 
(EIM) for different land cover types

LiDAR-derived variable Mean (standard deviation)
 Red cypress Sugi Mixed hardwoods Bare land
EIMAll 155.17(15.90) 149.21 (17.99) 122.68 (23.58) 71.47(56.32)
EIMFE 149.95 (17.79) 95.87(20.47) 85.81 (22.24) 28.22 (39.10)
EIMSE 65.78 (10.18) 43.84 (12.70) 46.11 (12.26) 3.92 (15.16)
EIMLE 70.28(12.68) 60.63(16.41) 59.70 (11.77) 22.21 (29.45) 
EIMOE 199.28 (14.51) 187.46 (21.97) 174.50 (25.70) 66.63(59.92)
ALL, all echo types; FE, first echo; SE, second echo; LE, last echo; OE, only echo.
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of Song et al. (2002) and Moffiet et al. (2005). 
Measurements of LiDAR intensity are sen-
sitive to different ground textures, and can 
distinguish bare land from other vegetation 
classes.

Comparisons of echo types from LiDAR-
derived variables

The vertical distribution of each echo 
type represents different vertical forest 
structures. The first echo is reflected from 
the canopy surface, the only echo from the 
canopy surface and canopy gap, the second 
echo from inside the canopy, and the last echo 
is reflected from the ground of forest land or 
inside the canopy (Fig. 2 right).

In order to give a brief outline of the col-
lected data, Fig. 5 clearly shows DN value 
of the EIM and the fractional of value of the 
REM among 4 land cover types with different 
x-axis scales for each echo type. The value 
of REMOE was much higher than those of the 
other echo types of the REM (Fig. 5 right) 
for all types. The higher proportion of only 
echoes was caused by high stand densities in 
the study area, in that the emitted laser light 
could not easily pass through the vegetation 
surface. Most of the only echoes were reflect-
ed from the canopy surface (Fig. 2 right). The 
REMOE can be used to represent the canopy 
density, and the ratio of the only echo is relat-
ed to the impermeability of the foliage cover 
(Moffiet et al. 2005). The REMOE showed the 
highest fractional value in Sugi compared 
to red cypress and mixed hardwoods (Fig. 
5 right). This means that Sugi had a higher 
foliage cover density. Otherwise, fractional 
values of the REMFE and REMLE were very 
similar among all vegetation types.

In intensity variables of all forest types, 
the EIMOE showed a higher-intensity value 
than the other echo types with the EIM (Fig. 
5 left), with the same outcome in Ørka et al. 

(2007)’s study. The higher-intensity value of 
the EIMOE comes from the character of the 
only echo that provides a single return. The 
emitted light retains much higher energy in 
only echoes, so only echoes yielded higher-
intensity DN values than the other echo types. 
The EIMFE had the second intensity DN value 
in the EIM. The EIMSE, and EIMLE showed 
lower-intensity DN values in the EIM (Fig. 
5 left). These results indicated that when the 
emitted laser light passed through the vegeta-
tion, the energy of the laser light decreased, 
which led to lower-intensity DN values in the 
multiple-return datasets. As the frequency of 
return increased and the intensity of the DN 
values decreased, the EIMSE and EIMLE pro-
duced lower DN values. The results described 
above fit the conditions of land-cover types in 
this study area.

Comparisons of LiDAR-derived vari-
ables among forest types

In this study, the researchers further test-
ed LiDAR-derived variables for land cover 
classifications at the stand level. The trans-
formed divergence (TD) was used to analyze 
the separability of the training data among 
these cover types. Results showed that TD 
values ranged 1870~2000; the separation was 
good, and all the classes could be separated 
(Table 6).

Duncan’s test was also used to compare 
differences for the land types (Table 7). The 
EIMFE and EIMOE showed distinct differences 
in intensity mean values among the 3 for-
est types and bare land (Table 7). Ørka et al. 
(2007) also indicated that the intensity of the 
first echo was the most appropriate measure 
to discriminate tree species. However, there 
was some confusion between red cypress and 
Sugi in the EIMAll, and there was also some 
confusion between mixed hardwoods and 
Sugi in the EIMSE and EIMLE (Table 7).
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Fig. 5. Statistical distributions of the echo intensity model (EIM) and ratio of echo model 
(REM) in echo types for each forest cover type, (a) EIM of red cypress, (b) REM of red 
cypress, (c) EIM of Sugi, (d) REM of Sugi, (e) EIM of mixed hardwoods, (f) REM of mixed 
hardwoods, (g) EIM of bare land, (h) REM of bare land.
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All echo types of the REM showed dis-
tinct differences among land cover types (Ta-
ble 7). In a study by Takahashi et al. (2006), 
the laser penetration rate differed between 
Hinoki cypress and Sugi stands, and a simi-
lar result was also found in this study as red 
cypress and Hinoki cypress are similar tree 
species. Results of this research also showed 
that all echo types of the REM could differ-
entiate among Sugi, red cypress, and mixed 
hardwoods (Table 7). The canopy structure 
of Sugi and the other 2 forest types greatly 
differ, because Sugi has a smaller tree crown 
size (Fig. 2c). Thus, the result demonstrated 
that the REM can represent canopy density.

Actually, the REM can distinguish be-
tween Sugi and mixed hardwoods, and this 
result demonstrated that intensity data were 
also related to canopy density. Similarly as 
suggested by Schreier et al. (1985), LiDAR 

intensity provides exact information on the 
vegetation density. The REMFE, REMLE, and 
REMOE showed higher F values: 720.826, 
610.271, and 692.788, respectively (Table 7). 
These values indicate that the REMFE, REMLE, 
and REMOE had higher variations, and might 
carry more information about forest lands. 
In a study by Holmgren and Persson (2004), 
the proportions of first echoes outlined a high 
accuracy of classification for differentiating 
among tree species. Moffiet et al. (2005)’s 
research indicated that proportions of singular 
returns showed potential for assisting with spe-
cies differentiation. The findings from those 
2 studies also provide a fundamental basis for 
this study to develop. The first echo provided 
plenty of information for both the propor-
tions of echo returns and the intensity data.

All echo types of the EIM and REM 
showed clear differences in the bare land 
class, because bare land did not provide mul-
tiple returns. So the EIM and REM can easily 
identify bare land from forest land.

Results of classification and accuracy as-
sessments
LiDAR single image classification

The classification accuracies from the 
REM and EIM are displayed in Table 8, 

Table 6. Transformed divergence for 
training data
 

Class
 Red  

Sugi
 Mixed 

 cypress  hardwoods
Red cypress   
Sugi 1998.13  
Mixed hardwoods 1944.01 1870.15 
Bare land 2000 2000 2000

Table 7. Results of Duncan’s test
Images F Duncan’s test
EIMAll 211.079** Bare land a Mixed hardwoods b Sugi c Red cypress c

EIMFE 434.459** Bare land a Mixed hardwoods b Sugi c Red cypress d

EIMSE 461.419** Bare land a Mixed hardwoods b Sugi b Red cypress c

EIMLE 163.451** Bare land a Mixed hardwoods b Sugi b Red cypress c

EIMOE 437.435** Bare land a Mixed hardwoods b Sugi c Red cypress d

REMFE 720.826** Bare land a Sugi b Red cypress c Mixed hardwoods d

REMSE 191.905** Bare land a Sugi b Mixed hardwoods c Red cypress d

REMLE 610.271** Bare land a Sugi b Mixed hardwoods c Red cypress d

REMOE 692.788** Red cypress a Mixed hardwoods b Sugi c Bare land d

Land types in a row followed by the same letter do not significantly differ.
ALL, all echo types; FE, first echo; SE, second echo; LE, last echo; OE, only echo.
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where the highest classification accuracy of 
overall classification was with the REMFE, at 
68.5% (Table 8). This result matched the find-
ing of Holmgren and Persson (2004), where 
a higher classification accuracy, using a dis-
crimination analysis with the proportion of 
first echoes, reached 78.0%.

The overall classification accuracy of the 
REMOE was 66.5% (Table 8). Moffiet et al. 
(2005) also noted that the proportion of only 
echoes can potentially discriminate species. 
In Holmgren and Persson (2004)’s paper, the 
higher overall classification accuracy, with 
proportion of surface returns, was 75.6%. In 
this study with a higher classification accu-
racy, most of the only echoes were reflected 
on the canopy surface, so only echoes could 
represent the surface return.

Classification results from the EIMFE 
showed a higher classification accuracy of 
intensity data of up to 68.0% (Table 8). Ørka 
et al. (2007) applied a linear discriminant 
analysis (LDA) to analyze the mean intensity 
of first echoes for classifying tree species at 
the single tree level, and they achieved the 
highest overall accuracy of up to 68.3%. Ørka 
et al. (2007) also indicated that the intensity 

of first echoes was the most appropriate mea-
sure for separating tree species, with the same 
results as in our research.

Results of the single image classification 
indicated that LiDAR-derived variables have 
the capability to classify forest types; and all 
variables showed a range of classification ac-
curacies of 50.5~68.5% (Table 8). Generally 
speaking, the EIMFE, REMFE, REMLE, and 
REMOE had higher potential for forest type 
classification, but for more-accurate mapping 
results, the overall classification accuracy 
was still low. Each variable may possess dif-
ferent information from the 4 land types, and 
the variable may have been complementarily 
characterized. Thus, combining those vari-
ables may produce more-precise results for 
accuracy.

LiDAR stack image classification
This study found that if LiDAR-derived 

variables for image classification were com-
bined with those variables, there would be 
more-precise results for accuracy. For LiDAR 
stack image classification, the highest accura-
cy of the overall classification reached 81.5%, 
with overall Kappa statistics of 0.75 (Table 
9). According to the accuracy of the producer, 
red cypress and bare land had higher accuracy 
producers, at 89.2 and 88.7, respectively (Ta-
ble 9). It is not difficult to see the misclassi-
fication of Sugi and mixed hardwoods which 
contained most of the errors. The composition 
of mixed hardwoods was complex, and this 
may have caused most of the errors. However, 
the result was still good and acceptable. The 
final map of classification is shown in Fig. 6.

Stacking all of the data for classification 
processing may result in complex informa-
tion, and the results showed that stacked 
images carried more-complete information, 
and greatly increased the classification accu-
racy. The results proved that the classification 

Table 8. Classification accuracy of single 
images
 Overall classification  Overall Kappa 
 accuracy (%) statistics
EIMAll 53.5 0.39
EIMFE 68.0 0.57
EIMSE 60.0 0.47
EIMLE 50.5 0.34
EIMOE 52.0 0.37
REMFE 68.5 0.58
REMSE 51.5 0.36
REMLE 66.0 0.55
REMOE 66.5 0.55
ALL, all echo types; FE, first echo; SE, second 
echo; LE, last echo; OE, only echo.
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Table 9. Error matrix resulting from LiDAR stack images
 Class name RC SG MH BL Total User’s accuracy (%)
Red cypress (RC) 33 03 06 03 045 73.3
Sugi (SG) 02 36 08 03 049 73.5
Mixed hardwoods (MH) 02 09 47 - 058 81
Bare land (BL) - - 01 47 048 97.9
Total 37 48 62 53 200 -
Producer’s accuracy (%) 89.2 75 75.8 88.7 - -
Overall accuracy 81.5
Overall Kappa statistics 0.75

Fig. 6. Forest cover map based on LiDAR stack image classification.

accuracy was higher than with single image 
classification processing at up to 81.5%. In 
Holmgren and Persson (2004)’s paper, the 
higher classification accuracy reached 95%, 

by combining 6 LiDAR-derived variables. 
Bartels and Wei (2006)’s study indicated that 
combining more LiDAR-derived variables 
would achieve higher classification results. 
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Ørka et al. (2007) believed that combining 
more LiDAR-derived variables produced 
a higher accuracy and probably improved 
the classification results, with the highest 
classification accuracy up to 73.2%, when 
combining all of the intensity variables. The 
results of stack image classification indicated 
that combining LiDAR-derived variables can 
be used to generate accurate forest type maps.

CONCLUSIONS

Results of this study indicate that Li-
DAR multiple-return and intensity data can 
be used for classifying land cover types. In 
this research, the REM and EIM were effec-
tive in identifying differences in forest types. 
The LiDAR intensity also provided informa-
tion on the density of the vegetation. When 
the emitted laser light passed through the 
vegetation, the energy of the laser light de-
creased, leading to lower-intensity DN values 
for the EIMSE and EIMLE. In the evaluation of 
echo types, the first echo produced plentiful 
information in both the proportions of echo 
returns and intensity data. LiDAR multiple-
return characters were useful in identifying 
bare land, because bare land did not produce 
multiple returns. In the intensity data, bare 
land provided a lower-intensity DN value that 
can be useful in easily identifying bare land.

Results of the single image classification 
pointed out that LiDAR-derived variables 
have the capability to classify forest types. 
Generally speaking, the EIMFE, REMFE, 
REMLE, and REMOE showed higher potential 
for forest-type classification. Results of stack 
image classification indicated that combin-
ing more LiDAR-derived variables generated 
more-accurate forest type maps, and this 
procedure obtained the highest overall clas-
sification accuracy of up to 81.5%. In the 
near future, integrating LiDAR data and other 

data of optical remote sensing will become an 
outstanding advancement in the field of forest 
mapping.
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