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【Summary】

Developing appropriate seed dispersal functions to quantify seed dispersal is one of the impor-
tant themes in plant ecology, because the post-dispersal distributions of seeds translate spatial pat-
terns of parent plants to offspring and result in significant ecological consequences. In this study, 
the best-fitting seed dispersal functions were identified for 4 tree species in the Kenting forest dy-
namics plot in Taiwan. Dispersal functions between animal- and wind-dispersed species were also 
compared. Seed rain data were collected weekly from 72 seed traps (0.5 m2) along 4 transects with-
in a 10-ha permanent plot (400×250 m) in Kenting from August 2006 to April 2009. We chose 2 
animal-dispersed species, and 2 wind-dispersed counterparts for this study. Applying the inverse-
modeling approach, we developed seed dispersal functions via maximum likelihood methods. 
Weibull, lognormal, and 2-dimensional t (2Dt) models with negative binomial errors were used. 
Akaike’s Information Criterion was used to determine the best-fitting model. The results indicated 
that the lognormal and 2Dt models were the best-fitting models for the studied species. The best-
fitting models did not differ between the 2 dispersal modes since they were equally represented for 
animal- and wind-dispersed species. However, the level of goodness-of-fit was higher for wind-
dispersed than animal-dispersed species. In the future, mechanistic models should incorporate the 
behavior of seed dispersers to improve model fitting.
Key words: dispersal agents, forest dynamics plot, inverse modeling, seed dispersal.
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研究報告

墾丁森林動態樣區種子傳播模式之發展與評估

林葭瑀1) 林宜靜2,5) 林佩蓉3) 王相華4) 孫義方2)

摘 要

發展合適的種子傳播模式，量化種子傳播特性，是植物生態學研究上的重要課題，因為，種子經

傳播後的空間分布，代表植物族群之啟始分布，將顯著影響許多後續的生態過程。本研究的目標在於

使用逆向模式法，發展墾丁高位珊瑚礁森林動態樣區內，4種樹種的種子傳播模式，將種子傳播之特性
量化。此外，我們並比較風力與動物傳播物種於種子散布模式上的差異。自2006年8月至2009年4月，
每週於墾丁高位珊瑚礁10公頃森林動態樣區中，4條穿越線上所設置的72個種子網內，收集種子，所得
種子予以分類與計算數量。本研究利用逆向模式分析法(inverse modeling analysis)，分析2種藉動物傳
播、2種藉風力傳播之樹種。種子散布模式採用韋伯(Weibull)、對數常態分布(lognormal)與二維t分布
(2-dimensional t model, 2Dt)3種模式進行模擬，以最大概似度法(maximum likelihood methods)估算參
數，並利用AIC準則(Akaike’s Information Criterion)決定最適模式。結果顯示，對數常態分布與二維t
分布為較好模式，最適模式並未因種子傳播媒介不同而有差異，但模式適合度以風力傳播的樹種較動

物傳播的樹種高。未來，我們計劃發展混合或機制模式，將種子傳播者之行為加入種子傳播模式，以

改善模式的適合度。

關鍵詞：傳播媒介、森林動態樣區、逆向模式分析法、種子傳播。
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台灣林業科學25(1):53-62。

INTRODUCTION
Seed dispersal is recognized as one of 

the most critical ecological processes dur-
ing a plant’s life cycle, because seed disper-
sal represents an important mobile stage of 
plants and results in significant ecological 
and evolutionary consequences (Howe and 
Smallwood 1982, Nathan and Muller-Landau 
2000, Levin et al. 2003). For example, the 
post-dispersal distributions of seeds in rela-
tion to the parent plant, defined as the “seed 
shadow”, determine the initial spatial tem-
plate for plant populations and affect the local 
neighboring relationships of individual plants. 
Empirical studies showed that such neighbor-
ing relationships have a long-lasting impact 
on subsequent dynamics of plant populations 

(Miriti et al. 2001, Lin and Augspurger 2008) 
and communities (Levin et al. 2003). Fur-
thermore, seed dispersal is a key process by 
which plants expand their current distribution 
ranges, and it determines the probability of 
plants colonizing a new habitat (Howe and 
Smallwood 1982). The distance and proper-
ties of seed dispersal directly influence rates 
and patterns of plant migration. Quantifying 
seed dispersal, therefore, has become an im-
portant theme in plant ecology in the past few 
decades.

Seed dispersal patterns are quantified by 
seed dispersal functions (Clark et al. 1999, 
Nathan and Muller-Landau 2000). Seed dis-
persal functions are mathematical models that 
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describe how seed density changes with the 
distance from a parent tree (Nathan and Mull-
er-Landau 2000). Previous research indicated 
that a higher proportion of seed deposition 
occurs in areas closer to the parent plant than 
areas that are far way (Wilson 1993). In other 
words, seed density declines as the distance 
from the parent tree increases. Mathematical 
models with a skewed property have been 
applied to illustrate this density-distance rela-
tionship. Commonly used seed dispersal func-
tions include negative exponential, Weibull, 
and lognormal distributions (Nathan and 
Muller-Landau 2000). The shape and scale of 
different seed dispersal functions, however, 
greatly vary. It is important to select appro-
priate seed dispersal functions that are repre-
sentative of plant populations so that proper 
conclusions about ecological consequences of 
seed dispersal can be reached.

Traditionally, seed dispersal functions 
were obtained via regressing seed density 
against distance (Wilson 1993). A series of 
seed traps placed at varying distances around 
an isolated parent plant were used to carry 
out the estimation (Wilson 1993). This ap-
proach, however, can result in inappropriate 
seed dispersal functions of plant populations. 
Clark et al. (1999) pointed out 2 problems 
with the traditional approach. First, isolated 
parent trees are often located in an open area 
and yield more seeds than an average repro-
ductive tree in a closed forest. Second, the 
sampling of parent trees usually seems biased 
toward large trees when isolated parent trees 
are selected. Such sampling may lead to over-
estimations of plant fecundity and dispersal 
distance of a tree population.

Therefore, seeking an alternative ap-
proach to estimate seed dispersal functions 
representative of a tree population is an ur-
gent task for studying seed dispersal. A new 
approach, inverse modeling, was developed 

in recent years (Ribbens et al. 1994). This ap-
proach inversely estimates parameters from 
field observations. Seeds collected from each 
seed trap are assumed to be a summation of 
seeds dispersed from all possible parent trees 
within a given area. The probability of a seed 
arriving in a trap is determined by the dis-
tance to the parent tree and the size of the par-
ent tree (Ribbens et al. 1994). This approach 
estimates seed dispersal functions from the 
overall population and makes it possible to 
obtain reasonable seed dispersal functions 
that are representative of the tree population.

The inverse modeling approach has 
been widely applied to estimate seed disper-
sal functions in many tropical and temperate 
forests (Clark et al. 1999, Nathan and Muller-
Landau 2000). The functions estimated from 
those studies, however, show high levels of 
variability. A portion of the variation might be 
attributed to differences in dispersal modes. 
Clark et al. (2005) discovered that the mean 
dispersal distance of animal-dispersed spe-
cies was larger than that of wind-dispersed 
species. Seed shadows of animal-dispersed 
species may be affected by the behavior and 
movements of seed dispersers (Cousens et al. 
2008). Furthermore, many studies indicated 
that dispersal functions are context-dependent 
(Cousens et al. 2008), i.e., they depend on the 
composition of local dispersal vectors and site 
characteristics. Before any generalizations can 
be drawn, case studies of a wide range of spe-
cies, dispersal agents, and sites are necessary.

In this study, we sought to quantify seed 
dispersal of tree species via inverse model-
ing in a tropical forest in Kenting, Taiwan. 
Three objectives were identified. First, we 
developed and selected the best-fitting seed 
dispersal functions representative of various 
tree populations in the forest. Second, seed 
dispersal functions of species with different 
dispersal modes were compared. Third, we 
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characterized the seed dispersal of tree spe-
cies from the best-fitting models.

MATERIALS AND METHODS

Study site
We conducted this study in a tropical 

seasonal forest in the Kenting Uplifted Coral 
Reef Nature Reserve on the Hengchun Penin-
sula (21°58’N, 120°48’E), southern Taiwan. 
The forest features widely distributed uplifted 
coral reefs (Wang et al. 2004). The average 
mean temperature is 25.1℃ with an annual 
precipitation of 1963.8 mm (1977~2006). 
The climate in the area is characterized by a 
distinct annual monsoon season which lasts 
from October to March (Wang et al. 2004). A 
forest dynamics plot (FDP) was established 
in 1997, and it is 10 ha in size (Wang et al. 
2004). Dominant species in the plot include 

Diospyros maritime, Ficus benjamina, Mela-
nolepis multiglandulosa, Bischofia javanica, 
Palaquium formosanum, Aglaia formosana, 
and Pouteria obovata.

Field sampling
Seed rain was collected weekly by 72 

seed traps from August 2006 to April 2009. 
These 72 traps were placed along 4 east-west 
transects at 20-m intervals (Fig. 1). Each tran-
sect was 340 m long, starting at a point 30 m 
from the western edge and ending 30 m from 
the eastern edge of the plot. Areas within 30 
m from the plot edges were excluded to avoid 
edge effects. Seed traps were comprised of 
1-mm wire-mesh screens 0.5 m2 in area which 
were supported by PVC frames and were 1 m 
above the ground.

Reproductive parts of woody plants, in-
cluding flowers, fruits, and seeds, were col-

Fig. 1. Contour map and locations of seed traps in the Kenting forest dynamics plot. The 
black dots are seed traps overlain with 10-m contour lines.
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lected weekly. Samples from each trap were 
quantified and identified by species. Only 
mature seeds, either contained within mature 
fruits or presenting as an independent unit, 
were included in the analysis. Locations of 
parent trees were obtained from a census 
during 1997~2002 by a research team led by 
Wang and Sun (Wang et al. 2004). The parent 
trees were assumed to be trees with a diam-
eter at breast height (DBH) ≥ 10 cm.

Data analysis
We developed seed dispersal functions 

for 4 target species. The target species were 
B. javanica (Euphorbiaceae), Dendrocnide 
meyeniana (Urticaceae), Lagerstroemia sub-
costata (Lythraceae), and Fraxinus griffithii 
(Oleaceae). The target species were chosen 
based upon the number of seeds collected 
from the seed traps and their distributions 
within the plot. These 4 species had sufficient 
sample sizes for model development. In ad-
dition, seeds of the study species reached 
more than 20% of the traps. Among the 4 
species, the first 2 species are recognized as 
animal-dispersed species, while the other 2 
species were identified as wind-dispersed spe-
cies. The dispersal mode of the species was 
determined by fruit and seed morphology. 
Species with fleshy and succulent fruits were 
classified as animal-dispersed species, and 
species containing winged seeds were treated 
as wind-dispersed species (Huang 1994). 
The timing of fruiting was similar among the 
study species. Mature seeds of the majority 
of the species were mostly collected from 
September to December. Among the species, 
Den. meyeniana has an extended fruiting pe-
riod. Mature seeds of Den. meyeniana were 
collected in 11 mo in 2007 and 2008.

Seed dispersal functions were developed 
via inverse modeling. There were 3 steps in 
the inverse modeling approach: 1) model 

specification, 2) parameter estimation, and 3) 
model selection.

1. Model specification
There were 2 components of a seed dis-

persal function, fecundity (Q) and a dispersal 
kernel f(r,  Φ). A dispersal kernel is a proba-
bility density function (PDF) which expresses 
the relative density of seeds at different dis-
tances from the parent plant. A mathematical 
formula of a seed dispersal function is as fol-
lows:
S ( r,  Φ) = Q f(r,  Φ);
where S(r, Φ) refers to the seed density at a 
given distance, r, and angle, Φ; Q is the an-
nual fecundity; and f(r, Φ) is a 2-dimensional 
seed dispersal kernel. With a given angle (θ) 
and distance ranges (r), the number of accu-
mulated seeds can be expressed as:
∫r

r + dr ∫oθ f(r ,  Φ) dΦdr = θ ∫r
r + dr rƒθ (r) dr.

Isotropic seed dispersal functions are the 
product of 2πr and a 1-dimensional seed 
dispersal function (ƒθ (r)). Annual fecundity 
(Q) was expressed as a function of the size of 
the parent tree (B). Annual fecundity can be 
described as:
Q = kB2;
where k is an empirical coefficient and B is 
the DBH of the parent tree.

Three alternative seed dispersal func-
tions, Weibull, lognormal, and the Clark 2-di-
mensional t model (2Dt), were used in this 
study (Table 1). These 3 models are widely 
used and were shown to well fit empirical 
data in the literature (Nathan and Muller-Lan-
dau 2000, Greene et al. 2004). Among these 3 
models, the Clark 2Dt model is an extension 
of an exponential model with a normally dis-
tributed variable for the scale parameter (Clark 
et al. 1999). Two parameters were included 
in the 3 models. These 2 parameters were ex-
pressed as scale (s) and shape (a) parameters 
(Table 1). To simplify the estimation, shape 
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parameters were set to 2 in the 2Dt model 
(Clark et al. 2005) and 3 in the Weibull model 
(Ribbens et al. 1994).

2. Parameter estimation
Parameters within each of the 3 disper-

sal functions were estimated by maximum 
likelihood methods (Greene et al. 2004). Er-
rors were assumed to be a negative binomial 
distribution. Our preliminary analysis indi-
cated that dispersal functions with negative 
binomial errors performed better than models 
with Poisson errors. Therefore, we only ap-
plied negative binomial errors to the final 
analysis. A bootstrapping procedure was used, 
and medians of 1000 bootstrap samples for 
all parameters were taken as estimates of the 
parameters (Efron and Tibshirani 1993).

3. Model selection
We used Akaike’s Information Criterion 

(AIC) to compare alternative models and to 
select the best-fitting model (Burnham and 
Anderson 1998). The AIC was defined as:
AIC = -2L + 2p;
where L is the log likelihood and p is the 
number of parameters in the model. The best-
fitting model has the smallest AIC value 
among all alternative models (Burnham and 
Anderson 1998). The goodness-of-fit of the 
model was evaluated by Pearson’s correlation 
coefficients between the observed number of 
seeds per trap and predicted number derived 

from the best-fitting models (Dalling et al. 
2002). The number of seeds per trap was log-
transformed. After the best-fitting models 
were selected, the mean dispersal distance 
was estimated for each of the studied species. 
The mean dispersal distance was estimated 
via the moment-generating function (Cousens 
et al. 2008). All modeling and statistical 
analyses were performed in R language (R 
Development Core Team 2008).

RESULTS

Parameter estimates varied greatly 
among species (Table 2). The estimates de-
rived from the 3 alternative functions had 
similar magnitudes and yielded comparable 
seed distributions for the same species (Table 
2, Fig. 2). The lognormal and 2Dt models 
were the best-fitting models for the studied 
species. The AIC values of the lognormal 
function were lowest for B. javanica and L. 
subcostata (Table 3). The 2Dt models per-
formed the best for Den. meyeniana and F. 
griffithii (Table 3). Differences in the AIC 
values, however, were small for the lognor-
mal and 2Dt functions.

The lognormal and 2Dt functions were 
equally represented within each of the 2 
dispersal modes (Table 3). One lognormal 
and 1 2Dt model were selected for animal- 
and wind-dispersed species, respectively 
(Table 3). Pearson correlation coefficients be-

Table 1. The 3 seed dispersal functions used in this study. Distance from the parent plant 
is expressed as x. The shape and scale parameters in the models are expressed by a and 
s, respectively. N is a normalizer to standardize the function. Formulas were from the 
1-dimensional model. 2-dimensional seed distribution kernel was obtained by multiplying 
the 1-dimensional model by 2πx (Greene et al. 2004)
	 Dispersal function	 Formula	 Parameters
Weibull	 (1/N) (exp (-axs))	 a, s
Lognormal	 [1/((2π)1.5sx2)] exp (-[ln(x/a)]2/(2s2))	 a, s
2-dimensional t (2Dt)	 s/(πa [1 + (x2/a)]s+1)	 a, s



59Taiwan J For Sci 25(1): 53-62, 2010

tween observed and predicted values ranged 
0.07~0.71 (Table 3). Correlation coefficients 
were larger for wind-dispersed species than 
for animal-dispersed species, suggesting 
a higher level of goodness-of-fit for wind-
dispersed species (Table 3).

The mean dispersal distance obtained 
from the best-fitting model ranged 7.70~31.49 
m (Table 3). Seeds of wind-dispersed species 
dispersed farther than those from animal-
dispersed species (Table 3).

DISCUSSION

The lognormal and 2Dt functions were 
the best-fitting seed dispersal functions for the 
4 species studied in this report. Minor differ-
ences in AIC values between the lognormal 
and 2Dt models indicated that these models 

Table 2. Parameter estimates of 3 alternative seed dispersal functions in the Kenting forest 
dynamics plot in Taiwan. The 3 seed dispersal functions included the Weibull, lognormal, 
and 2-dimensional t (2Dt) models
	 Species	 Weibull	 Lognormal	 2Dt
Animal-dispersed species	 		
  Bischofia javanica	 		
    Fecundity (seeds/cm2)	  4232.79	 5140.34	 5298.19
    Shape parameter (a)	     3.00	    0.61	    2.00
    Scale parameter (s)	    14.96	    6.39	   83.91
  Dendrocnide meyeniana	 		
    Fecundity (seeds/cm2)	 10,947.31	 9534.57	 8299.32
    Shape parameter (a)	     3.00	    0.45	    2.00
    Scale parameter (s)	    12.66	    8.10	  130.30
Wind-dispersed species			 
  Lagerstroemia subcostata	 		
    Fecundity (seeds/cm2)	  1775.98	  990.58	 1119.42
    Shape parameter (a)	     3.00	    1.21	    2.00
    Scale parameter (s)	    95.87	    9.10	  477.39
  Fraxinus griffithii	 		
    Fecundity (seeds/cm2)	   673.73	  973.11	  960.61
    Shape parameter (a)	     3.00	    0.64	    2.00
    Scale parameter (s)	    60.72	   27.25	 1608.09

Fig. 2. Seed dispersal curves derived from 
the 3 alternative seed dispersal functions 
of Bischofia javanica in the Kenting forest 
dynamics plot. The above curves were 
derived from 1-dimensional functions. 
2Dt, 2-dimensional t model.
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performed almost equally well in fitting the 
empirical data. In contrast, the Weibull model 
did not perform as well as the other 2 models, 
because the Weibull model was not selected 
as the best-fitting model for any of the studied 
species and yielded relatively larger AIC val-
ues. Our results were similar to other studies. 
Greene et al. (2004) showed that the lognor-
mal model was the best-fitting function for 
tree species of a temperate forest in southern 
Quebec, and the 2Dt model preformed well 
for many tropical and temperate species (Clark 
et al. 1999, Muller-Landau et al. 2008). This 
good fit was attributed to their flexible curve 
shapes (Clark et al. 1999, Greene et al. 2004). 
Compared to some of the other commonly 
used models such as the Gaussian model, the 
lognormal and 2Dt models predict a higher 
relative density near the seed source and 
generate a fatter tail at the end of the curves 
(Cousens et al. 2008). Thus, the functions 
can fit empirical data relatively well at both 
the near and far ends of the dispersal curves 
(Clark et al. 1999, Greene et al. 2004).

Furthermore, the best-fitting models did 
not differ between the 2 dispersal modes, al-
though the Pearson correlation coefficients 
were higher for wind-dispersed species than 

for animal-dispersed species. The results sug-
gested a higher level of goodness-of-fit for 
wind-dispersed species. The process of seed 
dispersal by wind is much simpler than that 
by animals. Simulations generated by mecha-
nistic models suggested that seed dispersal by 
wind can be represented by unimodal and lep-
tokurtic curves which are similar to dispersal 
curves produced by seed dispersal functions 
via an inverse modeling approach (Cousens 
et al. 2008). In contrast, seed dispersal by ani-
mals is a rather complicated process and can 
be influenced by more than 1 dispersal vector 
(Nathan and Muller-Landau 2000). As a re-
sult, animal dispersal can result in multimodal 
dispersal curves (Cousens et al. 2008). Uni-
modal curves generated by the seed dispersal 
functions used in this study were insufficient 
to describe seed density in relation to the par-
ent tree. Two approaches were suggested to 
improve seed dispersal models for animal-
dispersed species. First, mixed models that 
combine multiple seed dispersal functions can 
be applied to quantify seed dispersal by ani-
mals (Cousens et al. 2008). Mixed models are 
a linear combination of various seed dispersal 
functions and, therefore, simultaneously retain 
the characteristics of multiple seed dispersal 

Table 3. Akaike’s Information Criterion (AIC), mean dispersal distances derived from the 
best-fitting functions, and Pearson correlation coefficients between observed and predicted 
log (seed density + 1) of the 4 study species in the Kenting forest dynamics plot in Taiwan. 
The best models were the models with the smallest AIC values
				    Best-fitting	 Mean	 Pearson
	 Species	 Weibull	 Lognormal	 2Dt		  dispersal	 correlation
				    model	 distance (m)	 coefficient
Animal-dispersed species	 					   
  Bischofia javanica	 782.82	 770.22	 771.09	 Lognormal	  7.70	 0.23
  Dendrocnide meyeniana	 677.18	 671.50	 671.12	 2Dt	  8.97	 0.07
Wind-dispersed species	 					   
  Lagerstroemia subcostata	 294.52	 256.73	 265.43	 Lognormal	 18.90	 0.60
  Fraxinus griffithii	 179.27	 175.36	 172.96	 2Dt	 31.49	 0.71
2Dt, 2-dimensional t model.
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functions. These models are suitable for de-
scribing seed dispersal by multiple dispersal 
vectors. Second, mechanistic models which 
include patterns of animal foraging and move-
ments can be developed (Morales and Carlo 
2006, Russo et al. 2006). These models incor-
porate the behaviors of seed dispersers and 
model the subsequent fate of individual seeds. 
Such models can provide the most detailed and 
accurate patterns of seed dispersal (Cousens 
et al. 2008). These improved approaches 
may provide better models than the original 
approach and allow us to incorporate more 
species into the analysis. In this study, we fo-
cused only on 4 species due to unreasonable 
parameter estimates. Species with unreason-
able parameter estimates are often highly ag-
gregated in space and have small sample sizes.

The estimated mean dispersal distances 
ranged 7.70~31.49 m in this study. Such 
distances are relatively short compared to 
estimates from other studies (Dalling et al. 
2002, Clark et al. 2005). These short dispersal 
distances might have arisen from environ-
mental heterogeneity at this study site. The 
topography of the Kenting forest is highly 
heterogeneous (Wang et al. 2004). Limestone 
from uplifted coral reefs is widely distrib-
uted across the landscape and results in sharp 
topographic changes within a short horizontal 
distance. These uplifted coral reefs can serve 
as barriers to seed dispersal and result in short 
dispersal distances. To evaluate the effects of 
spatial heterogeneity on seed dispersal, Schurr 
et al. (2008) modified the inverse modeling 
approach and incorporated spatial heterogene-
ity into the seed dispersal functions. Linking 
functions were added to seed dispersal mod-
els to characterize the alteration of seed dis-
persal by habitat heterogeneity (Schurr et al. 
2008). Such models would be appropriate in a 
highly heterogeneous habitat like the Kenting 
Uplifted Coral Reef Forest.

CONCLUSIONS

This study indicated that the lognormal 
and 2Dt models were the best-fitting mod-
els for the studied species. The best-fitting 
models did not differ between the 2 disper-
sal modes, but the model fitting of animal-
dispersed species was not as good as that of 
wind-dispersed species. Therefore, we pro-
posed to develop mixed or mechanistic mod-
els to include foraging behavior of various 
dispersal vectors in the models.
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