麻竹種子發笌與種子苗之培育

呂 錦 明

Germination and the Cultivation of Seedlings of Giant Bamboo（Dendrocalamus latiflorus Munro）

Chin－Ming Lü

荎 垓 省 林 業 試 驗 所
毫漓 亭北
中華民苗七十四年七月
TAIWAN FORESTRY RESEARCH INSTITUTE
Taipei，Taiwan，Republic of China
July． 1985

麻竹種子發芽與種子苗之培育

呂 錦 明

摘
 要

界之參考。

由於廉竹小花之稔性葚低，並且開花結實期葚長而零散，無法 1 次探得大量種子，因此只能分期採榾，逐次培有以累加其㮔子苗数。惟其掊育㮔子苗之目的及意義，並非一般林木之種子苗可興比擬 －因此建議睢速建造庶竹種苗園，並充分利用種苗園功能，以利優良品系之買擇及裁植材料之培育推度，亚列入永久败察，以研究麻竹之開花週期。

關键詞：麻竹，種子性状，棧子苗培育。

一，緒 言

縻竹（Dendrocalamus latiflorus Munro）屬於本本科（Gramineae）中竹亞科（Bambu－ soideae）之椯竹屬（Dendrocalamus Nees）。爲
 tose clump type）竹類。原産於䩂向北部，我國華南一帶亦有裁培。麻竹於何洔引選本省已無法稿考，至目前栽培已甚編普遍，面積計達 $90,865 \mathrm{ha}$ ，而以中部最多。其竹材可供建築 ，竹筏，編幾，工㢣及造紙等多種用途，而竹䈐味美，鳰夏，秋雨季之佳铕，所製成镜頊，䇚乾等多外銷日本及欧美各國，争取大量外源，貝爲本省重要経摔竹種之一

一般竹類甚少開花結實，且多於開花後綎而枯死，不若一般林木之於達到開花結真年歯後，可䋱

䋨開花結實，而其母樹則仍然生長繁茂，毫無損傷 －因此；竹類之繁殖多採用無性繁殖法，如：分株
之分株法及平捒法以培育竹苗。
傳特性完全保留，而不致於發生䰻化，所以對具有優良遗傳形質之個體，通常探用無性䇣施法以達到
良個體長久使用䈍性繁裂淮法繁殖，並供爲裁植材料之結果，可能導致該族㯲之部份基因消失，使族禁
的抵抗性，一旦病串害發生，則常一發而不可收捨 ，較最重時基至全軍覆攻而毁減。因此；無性繁殖法踓可覝爲培育優良佪澧必用之手段，但如果所有栽植材料均爲由無性繁殖培育之栶礕時，必須考量其大面積裁稙後可能發生之危險後果。

經辨竹類在其自古以來長久之栽培過程中，幾乎全部沿用烄爲方便而又較爲確實的無性繁殖法，甚少有以喠子培育苗木之噌試，其原因固然由於竹類本身甚少開花結實，種子難探爲其中之一，而其重要性之未被認樴應爲主要。麻竹於何時引種本省 ，已難查考既如前述，但可推想保於明末清初由大陸移住本省之先民所引入，而後以分株法逐䡛推廣至各地。如果這一推調無誤，則先民携自大陸之磨竹，因受賞時交通工具之限制，其個體（焒養系）數不致太多，其後復以這些少數個體的分薬推廣全省，是以本省所栽培麻竹之族萦所含基因範圍，可能極䳡狹小而變異不大。 根珔 Chu et al（1972 ）分析全省所探铖竹 85 挐株之過氧化同位酵素（ peroxidase isozyme）之結果，僅得4類不同之同位酵素型（isozymic pattern）。彼等根據此 4類酥素型，配合葉片單位面積上剛毛（blistles）數及氣孔（stomata）數，對該85單株廊竹綜合分析之結果，認爲本省弱竹可分爲 8 個品系。由於葉片上之湔毛數及氣孔數竘可能因環境不同而生差異，惟有同位酵素型與遺傳基因有關，且不因環境不同而改變，因此，最格而言，本省麻竹基本上僅蚐於 4 個不同之營養系。另㨡康佐築及黄松根（1975）同樣以過军化酵素研究 63 棵竹材用麻竹品系之結果，郗有 8 種不同營養系。設若此 8 營養系之酵素型藇前述 4 营蓖系者完全不同，則至目前爲止本省钘生化鑑定而確定之麻竹謍養系㒖12系而已，其遺傳基因之狽弱可得面知。

對此一重要經摔竹種而言，培育具有遗傳變異的種子苗，以補充其單純的基因庫尤㙷重要，而且勢在必行。雖然由於㡿竹甚少結實，而便其種子苗之繁殖發生困難，但也惟其如此，更顯麻竹軑子苗培育之重要性。

近年來，由於敢竹之開花枯死現象似有愈趨普遍之勢，不但使竹農遭受損失，而且形成栽培上之極大障碍。竹類開花之原因，經過長年來多數學者之研究，至今仍無定論。惟由存在於自然界之高等

植物種類均有開花現象而論，同屬高等植物中一䒨之竹類開花實並不足爲奇。嘪際上，種子苗之培育代表新生代之開始，以此新生的個體供䉆繁殖載培之用，不但可使竹林構成分子得到更新，而且可以創造此一竹種生育遇期之另一個新的輸廻。易言之 ，種子苗之培青，方踻解決竹類開花之基本策略，少敕學者亦持同樣看法（江濤，1974；王子定及陳明義，1971；高声，1972），但情乎此項觀點至今未獲竹農接受，亦未見着手實施種子苗培育者。作者有鑑於此，乃開始探集褧竹之穎果（caryopsis）或種子，嗙試其種子苗之培育，至少亦希望這些種子苗能對本省麻竹基因庫基因之補充能有所助益。

二，以往本省對麻竹種子苗之發現或培育之記錄

在本省經摔竹類之中，麻竹開花之現象較爲普㴜，且以近10年爲然，然勘少結實（江濤，1974；劉業經等，1979）。其甚少結實之原因乃由於其花之稔性（fertility）甚低之故（王子定及陳明義， 1971 ；江滈，1974），但仍可找到曾經發現或培育種子苗之記錄，效列述如下：
（）根據江濤（1974）之記載：1．民國58年（王子定及陳明義（1971）之記述第59年4月），臺大森林系砳究生陳明義氏（現爲中興大學植物系呚授）探得數 10 粒，並予播種，而後移於臺大惯驗林管處下坡林木園內，現（指民國62年）有已成長之麻竹2树。2．民國60年春，南投縣草屯鎖富寮里竹興洪新埤氏之竹園，層在 1 機開花竹之㻕穴內探得幼苗數株（其他友人亦層在同處採得幼竹苗），其中 6 株由江氏携囻臺北植於花盆內育苗，至62年，僅存 1株，高約 1 m ，生長不良。3．62年3月，臺南縣新營市民某氏函告江氏稿：蕖育有麻竹幼苗數百袾。
（ $)$ 本所育林糸助理張添榮君，曾於69年間培育麓竹種子苗 5 株，其中 1 㧣現仍栽於育林系温室旁花盆內，層供爲麻竹嵌絞病之接種試騟。
\Leftrightarrow 回（73）年6月22日，作者於蓮華池附近三角
 ，高各約 10 cm 。

由上述記録，可知麻竹雖然很少結寒，但仍有可能探得種子，並加培育，尤如新營市民某氏之得以培育幼苗數百株，踓屬罕見之特例，然亦更顯示培育相當数量種子苗之可能性。同時；如草屯洪新埤氏竹林，区三角耑竹林内天然下偛發芽成苗之例子，表示麻竹林内種子發芽之情形當媰不少，只是由於適些種子苗末受重視，也未被認識，所以很可能在不知不臨中（如竹林除草，培土之際）遭到哜除的命運。由此推測，貝際上，天然萠發之糜竹種子苗数量當不在少數。

三，採種，發弟及育苗經過

（）採種：

㸚將各種子組探種日期，採集種子数以及採種位置列如表1。

自3月7日第一次採稙，至10月19日第6次採種止，前後 7 個月餘，共計得 10 涠種子組，種子共 242 粒，其中 2 個種子組屬於單株種子，其餘均爲楥內混合或林分內混合之種子，並且；中埔（1）及（2）
，三角崙（1），（2）及（3）—1則爲同一開花竹碚之種子 －
（）穎果，種子之形態及大小
䳕能較易了解麻竹之花與穎果之間之關係，特先根據林維治（1974）之研究，略逃麻竹花之形態如下：小㭠（spikelet） $1 \sim 7$ 個業生於枝節上，形䣛狀而扁平，哑淡紫色或暗紫色，長 $1.0 \mathrm{~cm} \sim$ 2.0 cm ，寬 $0.8 \mathrm{~cm} \sim 1.2 \mathrm{~cm}$ ，其中包括小花（ floret） $6 \sim 8$ 柔。護穎（glume） 2 或多枚，廣㿼形，長 3.2 mm ，窅 2.2 mm ，表面及邊緣密生細毛 ；外穎（lemma）廣瞅形，長 $12 \mathrm{~mm} \sim 13 \mathrm{~mm}$ ，寬 $7 \mathrm{~mm} \sim 16 \mathrm{~mm}$ ，表面及邊緣密佈細毛；內穎（ （palea）長 $7 \mathrm{~mm} \sim 11 \mathrm{~mm}$ ，覧 $3 \mathrm{~mm} \sim 4 \mathrm{~mm}$ ，表面有毛；雌䗷（gynoecium）有毛，長 16 mm ，子房 （ovary）瞁，花柱（stigma）長，柱頭1，羽毛狀；雄荵（stamen）6放，通常裸露；薬（anther）黄色，蘭線形，長 $5 \mathrm{~mm} \sim 7 \mathrm{~mm}$ ，先端具尾狀凸出 （tail－shaped tip），其各部形狀示如圖 1 。

依據上述對麻竹花之形態及構造，通常可於開花枝之節上所見簇生，鄼状而䑌平稱小穂者，應即爲一般所稱花序（inflorescens），每 1 小率（花

表1 麻竹種子探集地點日期及探種粒數
Table 1．Place，Date and Number of Seed Collected．

批 次 Coll．No．	編 號 Seed－lots．	探集日期 Date	矐子粒数 No．of seeds	探 集 地 點
I	中 埔（1）	1984／3／7	9	中埔分所外埔工作站辦公䭒侧後
II	三角耑（1）	1984／3／14	52	
III－1	草潋	1984／5／3	20	
－2	三角芴（2）${ }^{\text {／}}$	1984／5／3	15	同三角容（1）且爲同埾
－3	莲葏池	1984／5／3	10	蓮華池分所至上唓華池林道遑與林班地交界（楊重武所有）
IV	中 埔（2）	1984／5／11	36	同中埔（1）且爲同豏
V－1	三角耑（3）－1	1984／6／21	29	同三角耍（1）且爲同檂
－2	三角觜（3）－2－1	1984／6／22	26	
－3	三角崙（3）－2－2	1984／6／22	5	
VI	蛟龍坑	1984／10／18	40	蓮華池分所新山林道蛟氅琣橋附近（黄育先所有）爲開花母竹㰞伐後之萠芽機 9 支細小開花森之混合雬子

1．flowering branch，$X 0.8$ 花枝
2．the rachilla－internode bearing two spikelets，X 1.5 花軸着生二個小繋
3．spikelet，X 3.5 小想
4．floret，X 2.0 小花
5．lateral view of lemma，X 3.0 外穎側面
6．the same，ventral view，X 3.0 同上，裏面
7．ventral view of palea（left）and dorsal view of palea（right）內顛裏面（左），背面（有）
8．dorsal view of glume，X 5.0 葆穎背面
9．the same，ventral view，X 5.0 同上，裏面
10．transverse section of lemma \＆palea，enlarged 外類及网穎横切面，放大
11．gynoecium，enlarged 雌䓌，放大
12．transverse section of ovary，showing the position of ovule and vascular strands， enlarged 子房横切面，示阫珠及維管束分佈位贯，放大
13．stamen，X 7.0 雄态
14．top of anther，showing a tail－shaped tip，enlarged 樂上部，示頂端有尾狀突出
圖 1：斻竹花部各器官
Fig．1：The Floral Organs of Dendrocalamus latiflorus．（林維治 1974）

序）上具有由花㒕變形而成之外，队穎包被之小花
 1 收及雄㯖 6 枚。所以；如果 1 個小穗上之小花均能授粉並發育成熟，則每 1 小穗應可得 $6 \sim 8$ 個種子。

園2所示䉀犘竹穎果及種子之形狀。郎：穎果外面仍由各小花㑏在う穎片（摘取時護穎有時會脫
說興小穗完全相同。易言之，穎舆卧由整個小穗所變化而來，但其中通常僅有稿子 1 棓，宛有 2 精以
果包括種子雨数），由此可見麻竹花之授粉弯㥅低 ，且又似以小穗最居中（最上面）小花之授粉率爲最高。

1．caryopsis（matured spikelet）X 1 穎果（成熟小穂）
2．seed X 1 種子
3．longitudinal section of ovary（empty inside），enlarged．子房縦剖面（中空），敎大
4．longitudinal section of unmatured seed，albumen inside，enlarged．未成熟種子総缡面：含胚乳，放大
5．caryopsis，enlarged．穎果，放大
6．sced，dorsal side，enlarged．種子背面，放大
7．seed，ventral side，enlarged，種子腹面，放大
8．seed，side view，enlarged．種子側面，放夫
珠之位置，放大
10．transverse section of seed，enlarged．種子横切面，放大
圖2：麻 竹之稹果及種子
Fig．2：Caryopsis and Seed of Dendrocalamus Ialiflorus．

表2：葹竹頼果大小
Table 2：Variations in Size of Caryopsis，Size and

探集弾諕 Coll．No．	$\begin{aligned} & \text { 編 } \\ & \text { Seed-lot } \end{aligned}$	果 Caryopsis			
		長 Length（cm）		筧 Width（cm）	
		笔圍 range	$\overline{\mathrm{X}} \pm \mathrm{S} \overline{\mathrm{x}}$	範園 range	$\overline{\mathrm{X}} \pm \mathrm{S} \overline{\mathrm{x}}$
I	中 埔（1）	－	－	－	－
II．	三角崙（1）	－	－	－	－
III－1	草 瀾	$1.00 \sim 1.60$	1.33 ± 0.033	$0.70 \sim 1.10$	0.82 ± 0.029
－2	三角蓇（2）	$1.10 \sim 1.50$	1.29 ± 0.041	$0.50 \sim 1.00$	0.77 ± 0.042
－3	蒮華池	$1.20 \sim 1.40$	1.35 ± 0.027	$0.60 \sim 0.90$	0.79 ± 0.036
IV	中 埔（2）	－	－	－	－
$\mathrm{V}-1$	三角霏（3）－1	$1.00 \sim 1.20$	1.12 ± 0.015	$0.45 \sim 0.70$	0.60 ± 0.019
－2	三角耑（3）－2－1	$1.00 \sim 1.30$	1.16 ± 0.018	$0.40 \sim 0.80$	0.61 ± 0.021
－3	三角莦（3）－2－2	$1.10 \sim 1.20$	1.13 ± 0.025	$0.50 \sim 0.70$	0.56 ± 0.047
VI	蛟能坑	－	－	－	－

種子淡黃褐色至褐色，邲状，側視則呈腹面（ ventral side）扁壓而背面（dorsal side）隆起之形，背面隆起部之下牛部中央常見有縱向之淺凹溝，有封則可规其中央或秴上部位見到横線—條，平坦或稍隆起狀，㭬線上牛之顔色常較其下牛部者稍深，使麻竹種子呈戴笠帽狀。種皮甚薄，阫乳白色，或脄白色，狉珠位於腹面之基部，黃白色或淺黄線色。種子除其先端藇柱頭相連部分具細毛外，稌殆光滑無毛。至於其穎果之大小，種子之大小及重量之變異情形，拢本研究測定之結果如表2所示 －

1．經對 6 批穎果（ 82 粒）測定其大小之結果，其長度在 1.00 至 1.60 cm 之間，平均値則由三角䈁 （3）之 1.12 cm 以至蓮華池之 1.35 cm 之間；筧度則蒝 0.40 至 1.10 cm 之間，平均値則介於三角嵌（3）2－2之 0.56 cm 以至草澖之 0.82 cm 之間。

2．經測定 8 批種子（181粞）之結果，其長度在 0.40 至 1.00 cm 己間，平均値介於三角耑（3） $2-1$ 之 0.59 cm 以至峧龍坑之 0.76 cm 之間；覧度在 0.25至 0.60 cm 之間，示均値則介於三角㖇（3）2－1 之 0.34 cm 以至较龍坑之 0.45 cm 之間。

3．經測定 4 批共 85 粒種子重量之結果，其範圍在 0.004 至 0.174 g 之間，其間相差約達 44 倍，變化罢大。平均値介於草瀾之 0.040 g 以至蛟龍坑之 0.078 g 間。

（播種及發芽試驗

上逃麻竹種子，除第 1 次中埔所探，及第 2 次三角崙所採（三角丽（1））兩批種子播種稍遢而外，其他各批均於携可實驗室後郎行播種（採種後 1 週以內）。因舅竹類種子之播種向無經驗，故均播發芽盤队，並自第 3 批起，各批逐粒編號，順序排列發芵盤中，败察記錄其發芽情形（第 1 ，2 批雖未編號，但仍逐日記錄䛵芽憗），經整理計算其礅芽率，平均發芽日數如表 3 所示。

由表 3 ，蓮華池所探之種子發芽率達 90.00% ，中埔 (2) 之發芽率則僅 25.00% ，總再均 43.28% 。種子發芽所需日數，經觀察第 3 批以後各批種子發芽日數之結果，最短爲播種後第2天（約31小時）
短，最長需12．20天，總平均發芽日稘感6．40天，各批穕子，自播種以至發芳結束期間尚短，發芽勢亦少稱整齊。

種子大小及重量之變異
Weight of Seeds of Dendrocalamus latiflorus

		種		Seed	
長 Leng	（cm）	䙾 Widt	（cm）	重量	ght（g／g）
簪臬 range	$\overline{\mathrm{X}} \pm \mathrm{S} \overline{\mathrm{x}}$	範園 range	$\overline{\mathrm{X}} \pm \mathrm{S} \overline{\mathrm{x}}$	箽畋 range	$\overline{\mathrm{X}} \pm \mathrm{S} \overline{\mathrm{x}}$
－	－	－	－	－－	－
－	－	－	－	－	－
0．50～0．90	0.71 ± 0.023	$0.30 \sim 0.55$	0.40 ± 0.017	0．004～0．107	0.040 ± 0.006
$0.50 \sim 1.00$	0.73 ± 0.036	$0.25 \sim 0.55$	0.40 ± 0.019	0．006～0．140	$0.054 \sim 0.010$
$0.50 \sim 0.90$	0.71 ± 0.041	$0.30 \sim 0.60$	0.44 ± 0.028	$0.021 \sim 0.139$	0.066 ± 0.012
$0.45 \sim 0.80$	0.62 ± 0.012	$0.25 \sim 0.40$	0.34 ± 0.007	－	－
$0.50 \sim 0.75$	0.63 ± 0.012	$0.30 \sim 0.50$	0.35 ± 0.009	－	－
$0.40 \sim 0.70$	0.59 ± 0.014	$0.25 \sim 0.60$	0.34 ± 0.014	－	－
$0.60 \sim 0.80$	0.66 ± 0.040	$0.25 \sim 0.50$	0.35 ± 0.042	－	－
$0.60 \sim 0.90$	0.76 ± 0.014	$0.30 \sim 0.60$	0.45 ± 0.011	0． $25 \sim 0.174$	1.078 ± 0.005

各批種子之成苗率，除晈龍坑種子剛結束發芽 ，仍在培育初期，成苗率向末列入計算外，三角耑 （3）－2－2僅發芽 3 株，發芽率篇 60.00% ，惟均於發芽後發霉腐爛，相繼死亡，成苗率爲 0 ，其他種子組之成苗率介於 20.00% 云 52.63% 之間；總成苗數

30 株，僷佔總發芽數（牧龍坑者末計） 87 粒之 34.48 $\%$ ，成苗率稍偏低。

（四）麻竹種子苗之發育

麻竹種子發芽後各階段發育情形示如圖 3 。
麻竹種子之發芽，最快者於搯種後第 2 天（以

表 3：葹竹種子發芽率，隻芽日稘及成苗數之變異
Table 3：Variation in Germination Rate，Number of Days for Germination and Tree Ratio of Dendrocalamus latiflorus

探集批號	䄷 號	種子數	發芽數	發芽率	憼 牙	日 數	成苗數	成苗率	
Coll．No．	$\begin{aligned} & \text { Seed-lots } \\ & \text { No. } \end{aligned}$	No．of seeds （grain）	No．of seeds germi－ nated	Germi－ nation rate （\％）	$\begin{aligned} & \text { No. of } \\ & \text { germi } \\ & \text { 箭畋(天 } \\ & \text { range } \end{aligned}$		No．of seed－ lings	Tree ratio （\％）	Remarks
I	中 埔（1）	9	5	55.55	8～19	12.20 ± 1.88	1	20.00	變異苗 1 株
II	三角耑（1）	52	19	35.54	5～15	9.89 ± 0.78	10	52.53	變異苗6翃
III－1	草 洏	20	8	40.00	3～13	7.25 ± 1.24	2	25.00	變異苗 1 株
－2	三角崅（2）	15	9	50.00	3～7	4.55 ± 0.55	4	44.44	
－3	连華池	10	9	90.00	$3 \sim 8$	5.00 ± 0.50	2	22.22	笑異苗2侏
IV	中 埔（2）	35	9	25.00	3～13	8.44 ± 1.25	2	22.22	䜌暴苗 1 株
V－1	三角窝（3）－1	29	12	41.38	$3 \sim 9$	4.33 ± 0.54	4	33.33	
－2	三角耑（3）－2－1	25	13	50.00	$3 \sim 11$	4.92 ± 0.79	5	38.45	管異苗 1 脌
－3	三角訔（3）－2－2	5	3	50.00	$4 \sim 12$	8.57 ± 0.38	0	0	
VI	蛟龍玾	40	21	52.50	2－7	3.81 ± 0.33	－${ }^{1}$	－	（1）尚在育苗初期變異苗2 秼
	合 計	242	108	44.53	2～19	5.40 ± 0.35	（30）	（34．48）	成苗數及成苗率未包括 VI蛟龍玾

圆 3 ：麻竹種子苗發育之各階段
Fig．3：Developmental Stages of Dendrocalamus latiflorus Seeding

時數計算約爲 31小時）郎抽出胚根（radicle），一般則多於第 3 天開始發芽（1），次日郎可見乳白色阫芽（爲子葉靽，coleoptile）之抽出（2），發芽後約 4 天，抽出第 1 枚子葉（與一般竹筍之筍䉳相當 ），通常爲黃白色或尖端稍帶紫紅色（3）；再經約 3天後，抽出第 2 教子葉，而第 1 枚子葉（變爲䇸）
再約 $3 \sim 4$ 天，長出黃綠色以至線色之第 3 枚子葉 ，第 1 枚小葉片亦大致在此段期間出現，而各数前已抽出之子莱均䌞續發育，有時已可看到第 1 節初生竹稆（5）。雖然各單株生長變異榾大，不甚整齊，大致於發芽 1 個月時，可有 $1 \sim 2$ 片葉片，並可出現1～2節竹程（6）。

由陋芽發育之初生程，平均約於生長2個月（ 61天）之後，即可萌發第 1 支新筍爲第 2 程，最短者僅需 35 天，最長者約需 115 天始萠發新管，甚至如草瀾10號及中埔（2）－13號兩株，均於5月19日發芽，但至 10 月 31 日止，仍未見萌發第 1 䈐。又；自第 2 稈萌發之後，平均約於 62 天後萌發第 2 筍爲第 3 稈，最短僅需13天，最長者需 114 天，其個體間生長之差異相當大。

第 1 䄸（初生程）至生長停止時，基徑最小爲 0.05 cm ，最大 0.10 cm ，平均爲 0.08 cm 。苗高最小爲 2.0 cm ，最大 20.0 cm ，本均則第 12.60 cm ；第 2 䅣基徑最小篤 0.10 cm ，最大爲 0.20 cm ，平均 0.15 cm ；苗高最小爲 7.0 cm ，最大爲 27.0 cm ，平均則絾 15.85 cm 。

自最早發芽之4月12日起，至同年10月31日止 ，30株種子苗中，除 3 侏仍爲初生䄸狀態下外，其他27株苗木中，已發第 2 䅣者 9 株，㱍出第 3 程者 13 株，發生第 4 稈者 4 株，另 1 株則已發出第 6 程 （三角耑（2）－12號，5月9日黄芽）。又：30株種子苗之中，初生程已枯萎者計 15 株，其生育期間最短考134天（蓮華池10號，5月10日發芽，同年9月 20日枯萎），最長者䇹 165 天（三角筒（2）－5，－12，区－13號等 3 株，均同於5月 9 日發芽，並同於 10

月20日枯萎）。初生程未枯之 15 株，均䈧 5 月 19 日以後發芽者。

四，討論及建議

竹類種子苗之培育，以麻竹在本省之情形而言 ，以往的記錄甚爲零星，且䛈乏系統性，较大規模之採種，分批育苗之噼試，尙以本報告俿首次。種子苗棓育之重要性於前已远，由於庶竹在本省開花之情形甚爲普遍，今後當可絪續進行有關之研究，以確立氶竹育苗之適當方法，藉供竹農培育麻竹種子苗之参考。妶先以本（73）年6次採程，10批種子組育苗之經過加以檢討，並建識如下：
（ ）麻竹開花之形態，可分別見於王子定及陳明羲（1971）和林維治（1974）之報告。據本研究探種之經驗，自 3 月間採種之後，每次探種時，均見同一開花枝上同時出現各種發育階段之花以及穎果 －亦郎 ：同一時期，在同一開花校上，同時可出現發育未成熟之小穗，小花已盛開之小稘，開後郎將调謝（脫落）之小穗，幼果以至成熟果，可見箴竹開花期間甚長，且各小穗開放時間甚不一致，以致種子成熟期亦相當零散，此點亦爲使麻竹之探種工作較爲困難之原因之一，因爲穎果成熟零星，採種時即不能將全開花枝剪下，更不能將開花株全株砍下摘取成熟種子，面只能在伸手可及範瞕内逐粒榆視（靠兩手指撁壓之觸覮判斷），採取成熟種子，馀者留下令其签續開花，或侯發育成熟後再探。至 6月之後，上远情形已較爲少見，即：未開或盛開小穂均顯著減少，且成熟種子亦較少，以爲本年花期已趨結束，直至 10 月 19 日於峧龍坑採得第 6 批穗子 40 粒，由此整算，此機庶竹至少在 9 月間仍在開花或已開始開花。另外；同日亦發現三角耑沈築華氏竹林内及蓮荁池分所前小溪邊之麻竹检亦見新竹機已開花，由這些情形加以研判，則王子定及陳明義（1971）所述麻竹多在各季開花，而較具季篩性之說法，有待進一步認定。
\Leftrightarrow 由於種子成㵭期之不一致，加上其成熟度無
－ 10 －
法由穎果之外観加以判断，採集後豩開內，外穎，方能由其顔色及硬度，發現其中包括未成熟，甚至過熟的種子，由於種子成熟度之不整齊，影響其發芽率變化甚大（表3），呈黄白色，稍硬而未全熟之種子，已葚少發芽，更遑論黄白色而尚軟之未成熟種子。較硬而呈深褐色之過熟種子，亦因發芽力消失，而在發芽過程中發䨮腐機，這也可以說是麻竹種子苗培育上之障碍之一，然爲克服此一障碍，似亦唯有多探種子，多次重複育苗，逐次逐批增加稿子苗的株數。
 ，由於係第 1 次育苗，向無經驗，其原因不明。因竹㩽係屬於禾本科中之竹亞科，其授粉之機制可能较趣近於禾本科植物。禾唩類作物之大部分篤天然自交作物（self－pollinated crops），此類作物具備之特微爲：（1）䴤雄同花（hermaphrodite）； （2）花器保護㘙密；（3）開花之時間極短；（4）雌雄态同封成熱；（5）花於開放前多已受精；（6）嶉雄惁長度相仿；（7）花無特殊香味。又如粟及高梁屬常異交作物 （offen cross－pollinated crops），此類作物 （1）亦屬雌雍同花；（2）雌雄荵常伸出花外而受粉，花
 －大多數具有蜜腺（湯文通，1967）。依壉上述諸項特徵，麻竹應屬天然自交作物，亦郎：麻竹依其花器構造之特性，除其雌雄苾伸出花器外部爲屬於常異交作物之特徵而外，餘均較域近於天然自交作物者（圖 1）。果如是，由於天然自交作物不因自花授粉而妨碍其子代的生育（酒井，未發表），則其或苗率偏低非因於自花授粉之障磁而另有原因。惟在實際上，據本研究育苗過程中觀察之結果，中埔（1）發芽 5 株，餘 4 株（ 1 株於移植後被鳥啄食稸子），其中 1 株爲正常苗， 1 株爲白薬苗（albino
 20.00% ；三角俞（1）發芽 19 株，其中正常苗 10 株，白葉苗 4 株，異葉苗 1 株黄線色條紋苗 1 株，尚末明確者 3 株，這些不正常及不明確苗計 9 株於 5 月

21日～5月24日相絽死亡，其白葉苗之發生率篇 21.05% ，篡異苗之發生率則爲 31.58% ；蓮華池發芽 9 株，其中正常苗 3 株，白葉苗 1 梅，黄色斑葉苗1森，向不明確者 4 株，白葉苗發生率 11.11% ，變異苗之發生率則爲 22.22% ；较龍坑發芽 21 株 ，其中白葉苗 2 株，白薬苗發生率爲 9.2% 。所有白薬苗，黄葉苗及斑葉苗等，甚至包括向未能籃定變異情形之幼苗，除饺龍坑所楾者尚在育苗初期而未知外，均於育苗過程中相繖死亡。其他各批㮔子苗雖末見如上所述之葉緑素筧異苗（chlorophyllus anomaly or chlorophyll variation），然仍有矮性苗（dwarf seedling）之出現，如：中㙛 （2）－13號；草闌10號及三角菕（3）2－10號等是，而麻竹種子苗成苗率偏低之原因，似又與這些苗木之出現有關 。 酒井（未發表）將禃物大別僞自花授粉植物（autogamous plant）及異花授粉植物（ allogamous plant）兩類，並指出：自花授粉植物因普遍且連緽進行自花援粉，故其個顝之基因以同質結合（homozygous）爲主，並經自然沟汰使其發育不致於因自花授粉而變劣，而如果異花授粉植物發生自花授枌或近親交配等情形時，常導致種種不利於發育之障碍。一般而言，此種不利於葰育之䧫䲽，郎指隠性基因（recessive gene）之配對而引起之種種現象，包括上远之葉色變異，葉部形態之變異及矮性苗之出現等等，而常被利用於林木自花援粉率推算之指標（大庭，村井，1969； 1971 ；大庭等， 1971 ；1973；1974；大庭，1972a ； 1972b；Squillace and Kraus， 1963 ；Fowler， 1965）。根噳此一論點，另加麻竹花稔性極低（自花不稔性 self－sterility 高？參見三一（（ ）節）之事實，則麻竹種子苗中邆些變異苗之出現，似又屬於異花投粉植物行自花授衯之結果。此是否由於麻竹因達於開花期之時間所需勘長，而向來沿用無性繁殖法繁殖，栽培，從未如一般栽培作物之以有性繁殖方式交配選吉，致其遺傳基因仍保持傚復維之異質結合（heterozygous）状態，且於竹林中開花

常爲零星而單篰之情形下，難免（甚至可說必然）引起自花授粉現象，産生隠性基因之配對，而道致上䢞諸種變異苗之出現，這些有關麻竹授粉之機制 （包括稔性）等問題，沿有待深入研究。
（2）本省經済竹種之中，以其截培面積及産量而論，麻竹當居首位，而目前本省在麻竹之栽培上所遭㥜之最大困擾，當爲其開花之問題。身瓜高等植物中之一份子，竹類之開花乃屬必然的現象，而其開花之所以會引起問題，實因於其開花竹機在開花之後枯死，影響竹简孪量，並增加補㥀之麻煩，更有甚者，經補植之竹苗，亦常由於母竹之選擇不當 （事實上亦無法查知開花之預兆），而於尚未恢復生産力之前，郎與原母竹榚同時開花枯死，縱使選擇適當，而於補植後可恢復生產，然因其同爲原始母竹無性繁殖而來，生理年齠已高，不數年仍將屆其開花齢以至枯死當屬預料中事。欲解決此一問題 ，唯有多多培育種子苗，建立麻侮種苗園，以此園所繁殖之新生代，逐栭替換各竹林枯死之竹株方爲上策。此一種苗園應同時可具有下列諸項功能：（1）各株（様）明示其來歷（採種位置，年度及家系編號），列入永久穊察並記錄其生育階段所生各種變化，直至這些種子苗植株再次開花爲止，據此當可推知麻竹之開花年期。日本郎以此法推知孟宗竹在日本開花年期爲67年（京都）（Watanabe et al． 1982；渡櫋，1982），或48年（淺川試驗林）及51年（赤沼試驗林）（山路等，1984）。（2）種苗園队之舃立個骵，於生長至某一階段後，归可以分株法或平括法加以繁殖，供爲推廣之用（竹苗供應園）。（3）可利用其㮔苗園内栽植之單株（機）或其無性繁雃之營楸系，進行各家系生産量檢定，藉㼟選擇優良品系之根擦（優良品系逻種園）。

五，引用文䲣

王子定，陳明義。1971。臺潡竹類開花之研究。薹大萁驗林報告，No．87。
江㱍。1974。臺滈竹類研究之發展。 農復合特刊

新12號。
林維治。1974。竹花形態之研究。 林業試驗所報告 No． 248 。
高清。1972。菻竹開花之生理。 臺灣農業 8（4）： 208～218．
康佐榮，黃松根。1975。竹材用㾍竹品系之生化縕
定。 林業試驗所試驗竍告 No．278。
湯交通。1967。作物育薢之原理與實施。 p． 21 。臺大麎學院農鯄系
劉業經，林文鋇，林維治。1979。臺浸䋊濟樹木育
林學 p．437～479。中與大學呚務㬊出版組。山路木管男，富岡甲子次，小䳸哲夫。1984。記錄 の記錄の報告——モウソウチクの開花。 林業技術504：15～18。
大庭喜八郎。1972a。スアサ・キリシマィアサ＊
よびアオスギのミトリンスギ劣性遺傳子。日本林學會誌 54（1）：1～5。
大庭喜八郎。1972b。夕ロマツの黄子苗を生ずる劣性遺傳子および自然自殖率の推定。日本林學會誌 54（1）：28～29。
，村井正文。1969。イワオスギの自殖 および他殖實生における葉線素變異苗の發生 と苗高生長について。 日本林學㑒認 51（5）： 118～124。
，－1971。スギの白子苗およ び淡綠色苗を生ずる劣性遗傳子。日本森學會誌 53（6）：170～176。 ，宕川盈夫，岡田幸郎，村井正文。 1971。アカマツの葉線素變異苗の發生頻度に よる自然自殖率の推定および葉緑素變異苗の遺傳。 日本林學會読 53（10）：327～333。 ，百櫴行男，前田武彦 1.1973 。スキ精英栖からの異常苗の分離。 林業試驗場研究報告 No． 250 p．53～76。
，前田武音，福原渞朌。1974。ヨレス
ギの蛽傳子およびヨレ遣傳子と白子，ミドリ

スキの兩劣性遺傳子との連顉。 日林林學會誌 56（8）：276～281。

Chu，Y．E．，T．S．Chou，Y．S．Li，C．Y．Shih， and S．C．Woo． 1972 o Identification of Bamboo Clones，Dendrocalamus latifl－ orus in Taiwan．Bot．Bull．Acadamia Sinica 13：11－18

Fowler，D．P． $1965 \circ$ Effects of inbreeding in red pine，Pinus resinosa Ait．II． Pollination studies．Silv．Genet．14（1）：

Squillace，A．E．and J．K．Kraus． $1963{ }^{\circ}$ The degree of natural selfing in slash pines as estimated from albino frequencies．ibid．12（2）：46－50
Watanabe Masatoshi，Koichiro Ueda， Ippei Manabe，Tatsuo Akai．1982。 Flowering，seeding，germination and flowering periodicity of Phyllostachys pubescens．J．Jap．For．Soc．64（3）： 107 －111

Germination and the Cultivation of Seedlings of Giant Bamboo (Dendrocalamus latiflorus Munro)

Chin-Ming Lü

English summary

In Taiwan, flowering of giant bamboo (Dendrocalamus latiflorus) has become generally occurring throughout the Island since the latest decade. That leads the bamboo farmers to a great perplexity because the flowering culms of the whole clump will wilt and die soon after they flower. That not only results decrement of bamboo shoots production, but also makes trouble for the bamboo farmers of compensatory planting. And because most of the giant bamboo clones cultivated in Taiwan are very old in age. The flowering phenomena might occurr continuously and perhaps become more severely in the later years. Therefore, the perplexity of bamboo farmers will never come to an end.

Several works have been done to investigate the flowering phenomena of bamboo species including physiological conditions etc. or silvicultural treatments such as fertilization to prevent their flowering. But it is believed that to cultivate seedlings of giant bamboo is the only and fundamental way to solve this problem, because these planting materials obtained from the new generation might be better than the old materials which were generally used before, both on the view point of genetic effects and the regeneration of their physiological age. This is the first attempt to collect seeds and cultivate seedlings of giant bamboo for silvicultural purposes in Taiwan.

10 seed-lots of giant bamboo were collected during March to October 1984, from Lien-Hua-Chi (LHC) near Yu-Chi, Nan-Tou County, and Wai-Pu Working Station of Chung-Pu Branch (CP) of TFRI near Yun-Shui, Chia-Yi County. 242 grains of matured or nearly matured seeds were collected in total. The size of caryopsis (matured spikelet), and weight of seeds were measured, then seeds were sawed separetely by seed-lots in germination box for germination test, and about one week after, when the coleoptiles were about 1 cm long, they were transplanted into dibbling tubes and were cultivated outdoors, each stage of seedling development
was observed.
The size of caryopsis varied from 1.00 to 1.60 cm in length and from 0.40 to 1.10 cm in width. It is the same as that of spikelets. Seed length ranged from 0.40 to 1.00 cm , width ranged from 0.25 to 0.60 cm , and seed weight ranged from 0.004 to 0.174 g per 1 grain.

Germination rate of giant bamboo seeds varied from 25.0 to 90.00%, with 44.63% in average. Germination speed ranged from 2 to 19 days with 6.40 average number of days for germination. The first bamboo shoot (developing to 2nd culm) emerged about 6) days after their germination, and the 2 nd shoot emerged about the same days after the first emergence. The life span of the first culms (germinated from the seed) were about 134 to 165 days.

Rather low tree percent were obtained which ranged from 0 to 52.63%. This was because the high mortality caused by unknown reason, and by the appearence of chlorophyllus anomalies in relatively high percentage. They died during the early stage of the cultivation. The appearence of metamorphic seedlings might be caused by self-pollination of allogamous plant, but it still needs further study on this concern.

The difficulty of collecting seeds of giant bamboo may be in: (1) very low fertility of the spikelets or florets, and (2) highly disagreement of their blooming even within a flowering branch of a culm, i.e., in other word, blooming of the spikelets and florets can be seen throughout the whole flowering period (from the beginning of flowering till wilt and die), and the matured or unmatured caryopsis can be found also at the same time if there is any. Therefore, it is difficult to expact to collect abundant seeds of giant bamboo at one time from a flowering cluster. And so, in order to gradually increase the number of seedlings of giant bamboo for the silvicultural purposes, we lay down a long term and a wider ranged collection and cultivation plan is suggested.

Key words: Dendrocalamus latiflorus, seeds characteristics, seedling cultivation.

