阿里山五味子果實之天然成分和生物活性

- ○國立台灣大學醫學院藥學系·沈雅敬、鄭源斌、張孟亭
- ○輔仁大學理工學院生命科學系・郭育綺○國立中國醫藥研究所・郭曜豪
- ○林業試驗所育林組・陳舜英、簡慶德

前言

台灣產五味子科(Schisandraceae)植物, 木質藤本,分為南五味子屬(Kadsura)和五 味子屬(Schisandra)。南五味子屬台灣有二 種,即南五味子(Kadsura japonica)和菲律賓 南五味子(Kadsura philippinensis)。五味子 屬台灣有一種,即阿里山五味子(Schisandra arisanensis),特有種,木質莖粗大,俗稱大 號紅骨蛇。果實穗狀,懸垂,成熟時紅色, 每個果實有2粒種子(圖1);主要分布於海拔 1200~2500公尺濕度高之森林中,依不同海拔 高度和位置,果實成熟期7~10月。

五味子科植物為傳統著名的民間用藥, 過去研究報告指出,其化學成分有木質酚 素(lignans)、三萜類(triterpenes)、降三萜類 (nortriterpenes)、有機酸(organic acids)、揮發 油(essential oil)和多醣類(polysaccharides)等成 分。其中木質酚素具有許多功效,應用範圍 十分廣泛,例如用來治療肝炎的藥物聯苯雙 酯(dimethyl diphenyl bicarboxylate, DDB),即 是以schisandrin C為起始物來合成出一系列 衍生物,再從中篩選出的化合物。過去有關 五味子的活性成分研究指出, 五味子的藥理 作用包括抗肝炎、抗氧化、抗愛滋病及抗癌 症等功效。五味子確實對化學毒物如carbon tetrachloride (CCl₄)所引起的動物肝細胞損傷 有明顯的保護作用,這是因為五味子具有 降低麩胺酸丙酮酸轉胺酶(glutamic pyruvic transaminase, GPT)的能力。許多木質酚素,

圖1. 阿里山五味子果實(簡慶德攝)

如schisandrin B、schisandrin C、gomisin B、 gomisin C等,都可降低血清中GPT含量。五 味子還可活化穀胱甘肽(Glutathione, GSH), 因為GSH是一種強力的解毒劑,它大量存在 肝臟中,可幫助排除體內毒素。此外,GSH 亦是一種強力的抗氧化劑,可以直接捕捉自 由基(free radical),有效防止細胞受到氧化傷 害,此抗氧化效果比維他命E好。由抗愛滋 病研究方面發現, gomisin G具有抑制人類 反轉錄病毒的活性。抗癌症研究方面發現, schisandrin B、schisandrin C都可增加動物實 驗老鼠肝臟中的cytochrome P-450酵素濃度, 而cytochrome P-450是可將致癌物質多環芳香 烴(polycyclic aromatic hydrocarbon, PAH)在體 內轉換成水溶性代謝物的相關酵素之一。此 外,還發現gomisin G對子宮頸癌細胞(Hela)有 細胞毒殺和造成DNA裂解的作用。因此,五 味子是一種應用價值極高,開發前景十分看 好的藥用植物。

本文針對台灣特有種「阿里山五味子」 果實進行一連串天然成分分析,確定有效成 分之化學結構,並尋找生物活性高的成分, 希望能讓傳統中藥使用者更了解五味子的成 分,且有助於未來新藥物開發的可能性。

天然物萃取、分離和鑑定

利用台灣特有種阿里山五味子果實,包括綠色、淡黃色至紅色之混合果,冷凍乾燥後重量460公克為材料(含種子和果梗),藉由丙酮浸泡萃取,接著利用乙酸乙酯和水以1:1進行液液分配萃取,並以薄層色層分析片分得九個分離片段。選擇其中的分離片段,以100%甲醇進行Sephadex™ LH-20管柱分離,再分離八個片段。接著利用高效能液相層析儀(HPLC)搭配C-18管柱,以甲醇和水65:35的比例進行沖提分離。化合物結構是利用各種物理數據,包括比旋光度、紅外光、紫外光、CD光譜、質譜儀及配合一維、

 $R_{1}O_{5}$ G_{1} G_{2} G_{3} G_{4} G_{2} G_{3} G_{3} G_{4} G_{4} G_{2} G_{3} G_{3} G_{4} G_{4} G_{2} G_{3} G_{3} G_{4} G_{4}

圖2. Aryltetralone-type lignans ' 如arisantetralone A (R_1 = H, R_2 = Me, R_3 = H, R_4 = β -CH $_3$)

二維核磁共振圖譜,並參考相關文獻確定之。結果共獲得17個化合物,其中包括木質酚素類之4個新的aryltetralone-type lignans,命名為arisantetralones A-D(圖2)和7個新的 C_{18} -dibenzocyclooctadiene-type lignans,命名為arisanschinins F-L(圖3)。另外,6個已知的化合物,分別是(-)-holostyligone、pre-gomisin、gomisin F、gomisin G、epigomisin O和(+)-gomisin K_3 等。化合物arisantetralones A是柱狀結晶物質,透過單晶繞射實驗來偵測其晶體,更能確定其骨架與相對立體結構。

生物活性檢測

利用人類周邊血液單核球細胞(peripheral blood mononuclear cells, PBMC),進行化合物arisantetralones A-D、arisanschinins F-L、(-)-holostyligone、pre-gomisin、gomisin F、gomisin G、epigomisin O、(+)-gomisin K3等免疫調節功能評估試驗,並以免疫抑制劑

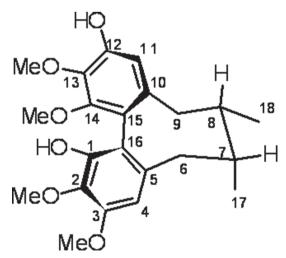


圖3. C_{18} -dibenzocyclooctadiene-type lignans,如 arisanschinin F

cyclosporine A (5 μM)作為正對照組 (positive control),測試結果如表1:

表1結果顯示,arisantetralone D效果與正對照組cyclosporine A最為接近,在細胞毒性較小的情況下,對PBMC增殖具有明顯的抑制作用,表示在免疫調節功能評估中是有意義的。雖然arisanschinin F、(-)-holostyligone、pre-gomisin等對人類周邊血液單核球細胞的效應,數值愈大,抑制作用愈大,但Resting cells欄arisanschinin F、(-)-holostyligone、pre-gomisin對單核球細胞毒性也較強。因此,arisantetralone D具有進一步研究的價值。

另外,利用人類癌細胞株human laryngeal carcinoma (HEp-2, 人類鼻咽癌細胞)、human

medulloblastoma (Daoy,人類骨髓癌細胞)、human breast adenocarcinoma (MCF-7,人類乳癌細胞)、human colon adenocarcinoma (WiDr,人類直腸癌細胞),進行化合物 arisantetralones A-D、arisanschinins F-L、(-)-holostyligone、pre-gomisin、gomisin F、gomisin G、epigomisin O、(+)-gomisin K3的細胞毒殺測試,並以抗腫瘤藥物mitomycin C作為對照組,其結果如表2:

由表2數據得知arisanschinin F和gomisin F具有癌細胞毒殺活性,其中又以arisanschinin F的效果最佳,對HEp-2、Daoy、MCF-7和WiDr的ED₅₀值分別為4.12、6.23、4.09和6.08 μg/ml,具有進一步研究的價值。

表1. 阿里山五味子果實內17個化合物對人類周邊血液單核球細胞增殖的效應

化合物		抑制作用(%)				
(100 µM)	Resting cells	PHA (0.2 μg/ml)	PHA (5 μg/ml)			
arisantetralone A	59.7 ± 0.8	78.1 ± 2.1	91.9 ± 0.9			
arisantetralone B	56.9 ± 0.7	75.3 ± 4.5	90.8 ± 1.1			
arisantetralone C	54.1 ± 3.0	76.3 ± 2.4	89.3 ± 1.1			
arisantetralone D	34.1 ± 1.6	70.1 ± 6.0	83.9 ± 0.9			
arisanschinin F	58.5 ± 2.8	81.7 ± 2.1	92.9 ± 1.2			
arisanschinin G	54.7 ± 3.2	76.3 ± 1.6	92.5 ± 1.5			
arisanschinin H	12.7 ± 3.6	16.4 ± 2.0	14.6 ± 7.9			
arisanschinin I	47.0 ± 6.7	74.0 ± 2.4	66.6 ± 1.7			
arisanschinin J	44.5 ± 4.4	67.0 ± 2.2	44.3 ± 2.9			
arisanschinin K	33.3 ± 2.5	57.1 ± 2.1	25.3 ± 7.3			
arisanschinin L	47.4 ± 2.4	70.0 ± 1.0	37.8 ± 0.2			
(–)-holostyligone	61.0 ± 2.9	82.7 ± 1.9	95.6 ± 1.0			
pre-gomisin	63.9 ± 4.6	83.0 ± 2.2	95.6 ± 0.8			
gomisin F	36.1 ± 4.5	75.2 ± 3.3	58.9 ± 2.1			
gomisin G	46.2 ± 1.1	75.8 ± 1.1	88.6 ± 0.7			
epigomisin O	61.3 ± 1.5	81.3 ± 2.9	86.6 ± 0.6			
(+)-gomisin K ₃	60.8 ± 2.3	80.1 ± 1.6	76.0 ± 0.9			
Cyclosporine A (5 µM)正對照組	25.5 ± 7.3	68.0 ± 8.5	89.9 ± 4.5			

註:Resting cells欄表示化合物對細胞毒性強弱,數值愈小表示化合物對細胞毒性較弱。PHA(phytohemagglutinin)是用來刺激細胞增生的物質,其二欄的數值愈大,表示化合物具有抑制細胞增生的功能。

表2. 阿里山五味子果實內17個化合物對人類癌細胞株的效應

// <u> </u>	癌細胞半數致死量[ED50(μg/mL)]				
化合物	HEp-2	Daoy	MCF-7	WiDr	
arisantetralone A	-	-	-	-	
arisantetralone B	-	-	-	-	
arisantetralone C	-	-	-	-	
arisantetralone D	-	-	-	-	
arisanschinin F	4.12	6.23	4.09	6.08	
arisanschinin G	-	-	-	-	
arisanschinin H	-	-	-	-	
arisanschinin I	-	-	-	-	
arisanschinin J	-	-	-	-	
arisanschinin K	-	-	-	-	
arisanschinin L	-	-	-	-	
(–)-holostyligone	-	-	-	-	
pre-gomisin	-	-	-	-	
gomisin F	10.68	-	15.66	-	
gomisin G	-	-	-	-	
epigomisin O	-	_	-	-	
(+)-gomisin K ₃	-	-	-	-	
Mitomycin C對照組	0.07	0.11	0.14	0.10	

註:「-」表示 $ED_{50}>40\mu g/mL;Mitomycin C(絲裂黴素C),屬抗生素類的抗腫瘤藥,用以治療癌症,如胃及胰臟的腺癌和膀胱癌,作用於減緩或停止體內癌細胞的增殖。$

結論

- 一、阿里山五味子果實,經萃取、分離純化 和結構解析,一共獲得17個木質酚素化 合物,其中11個為新發現的化合物,分別 命名為arisantetralones A-D、arisanschinins F-L,而其他6個已在文獻上發表的化合 物,分別為(-)-holostyligone、pre-gomisin、 gomisin F、gomisin G、epigomisin O、 (+)-gomisin K₃。
- 二、在過去的文獻中,五味子科植物之木 質酚素化合物骨架大多數為dibenzocyclooctadiene-type,本研究得到的化合 物骨架有dibenzocyclooctadiene-type和 aryltetralone-type二種。
- 三、生物活性測試方面,五味子木質酚素主要的藥理活性是抗肝炎與抗氧化等效用。本研究進行17個化合物之免疫調節功能評估試驗和癌細胞毒殺測試,發現arisantetralone D在對細胞毒性較小的情況下,對PBMC增生具有明顯的抑制作用,而化合物arisanschinin F則具有最佳的癌細胞毒殺效果。
- 備註:阿里山五味子為台灣特有種植物,生長在中高海拔山區,民間已有採摘藤莖當作藥用,未來需求量有可能增加,本科其他植物如南五味子(Kadsura japonica)也是常被用為中藥。五味子科植物可以利用種子繁殖,也可以進行無性扦插繁殖。阿里山五味子種子有休眠性,即形態生理的休眠,需要在25℃以下溫度發芽。研究顯示發芽溫度以變溫20/10℃和15/6℃最佳,6~7星期後開始發芽;25/15℃發芽率次之,30/20℃發芽率低。低溫5℃層積處理3個月亦可促進種子發芽。阿里山五味子栽種地點需要在海拔1000公尺以上,而南五味子可栽種低海拔地區。