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Research paper

Taper Modeling on Taiwania Plantation Trees
in the Liukuei Area

Dar-Hsiung Wang,1,2)     Han-Ching Hsieh,1)     Shyh-Chian Tang1)

【Summary】

Taper is used to measure the rate of decrease in the stem diameter of a tree from the bottom 
upwardly. Taper equations express the expected stem diameter with or without bark, as a function 
of the height above ground level, total tree height, and the diameter at breast height. Five tapering 
modeling approaches were used to estimate the stem diameter at a given height above the stump 
in Taiwania plantations, and their levels of accuracy and precision were compared. The results 
indicated that based on 3 criteria simultaneously considered, the trigonometric taper modeling ap-
proach was the worst for describing the taper of the entire tree bole, followed by the sigmoid form 
approach. Three-segmented polynomials, the variable-form stem profile and the polynomial form 
with higher-order approaches were preferred to describe the taper of the entire stem. The mean 
relative biases in percentage for these models on the validation trees were all < 4%. Along the 
bole, the root swell (the segment from 0.3 to 1.3 m in height) was the most difficult part to predict 
by taper modeling. However, the precision and accuracy of the prediction of tree root swell can be 
significantly improved using the 3-segmented polynomials or variable-form taper models.
Key words: stem profile, variable form model, segmented polynomials model.
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研究報告

六龜地區台灣杉人工林林木尖削度模式之建立

汪大雄1,2) 謝漢欽1) 湯適謙1)

摘 要

林木尖削度(taper)是指樹幹不同部位直徑之尖削程度，不同形狀之樹幹其尖削程度不一。尖削度

模式又稱為樹幹剖面模式(stem profile)，是描述樹幹連皮或去皮直徑隨著某特定高度之變化情形。尖

削度之重要性是在可以計算一株樹在不同利用標準下之木材利用材積。因此，對木材工業而言，良好

之尖削度模式可以在不同標準規格下提供準確有效之木材利用率。一般言之，尖削度模式種類甚多其
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配置之方式亦不同。本研究使用五種不同類別之模式探討六龜地區台灣杉人工林林木尖削度模式之建

立，並就各模式之推估能力進行比較。研究結果顯示就總體之推估能力(含偏差與精密度)言之除三角

模式外，各模式之間之差異不大，但描述各不同段位之能力則有明顯之差別。以從根株至10%樹高高

度之部位觀之，幾何形狀一般式和單一低階多項式之預測能力顯然較變動形數模式和分段式多項式為

差。變動形數模式和三段式多項式，雖然其數學模式較為複雜，然不但其總體之偏差百分比小於4%，

其幹材較低部位之偏差亦為最低，因比，變動形數模式和三段式多項式是為比較理想之尖削度模式。

關鍵詞：樹幹剖面模式、變動形數模式、分段式多項式。
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INTRODUCTION
The subject of stem taper curves con-

stitutes 1 of the bases of mensuration and 
biometrics (Husch et al. 1972). Accurate es-
timates of timber volume and dimensions are 
2 of the most critical pieces of information 
in the timber industry. As a result of closer 
utilization of wood in the stem and of more-
intensive forest management, the need has 
arisen for more-accurate taper functions that 
describe the profile of the stem along its en-
tirety (Reed and Green 1984).

In general, the stem form of conifers can 
be described as a combination of (i) within 
the live crown, where the stem is usually 
conical in form; (ii) in the region of the root 
swell near the base of tree, where the stem is 
neiloidal; and (iii) over the main section of 
the stem between the root swell and the base 
of the crown, where the stem is paraboloidal 
(Husch et al. 1972). While the form and taper 
of tree stems are 2 terms have been used in-
terchangeably in the past, it is now generally 
accepted that form refers to the geometric 
shape of the stem, whereas taper refers to the 
rate of decrease in diameter with the increase 
in height up the stem (Newnham 1992). 
Moreover, taper is also called as the stem pro-
file (Amidon 1984, Valentine and Gregoire 
2001).

Modeling the stem taper has been a wide-
spread effort in forestry during the past cen-

tury. Since the early 19th century, researchers 
have worked out methods to express tree 
form and taper in terms of easily measured 
tree characteristics (Perez et al. 1990). Early 
efforts to develop taper functions to describe 
the upper stem diameter in relation to height 
focused on the merchantable portions of the 
stem and were relatively simple in formula-
tion and thus did not satisfactorily describe 
the root swell and tip (Bruce et al. 1968, 
Newnham 1992). Because of the geometric 
flexible nature of tree stems, many different 
models of varying complexity were proposed 
during the past several decades in attempts to 
describe tree taper more accurately (Max and 
Burkhart 1976).

A literature review showed that the ap-
proaches adopted for modeling taper dur-
ing the past can be generally classified into 
the following categories: (i) sigmoid form 
(Ormerod 1973, Biging 1984); (ii) polynomi-
als of order 2 or greater (Bruce et al. 1968, 
Kozak et al. 1969); (iii) variable-form or vari-
able-exponent stem profile models (Newberry 
and Burkhart 1986, Newnham 1992, Kozak 
1988, Bi 2000); (iv) segmented polynomials 
with submodels (Max and Burkhart 1976, Cao 
et al. 1980); (v) trigonometric taper models 
(Thomas and Parresol 1991); (vi) compatible 
taper models (Byrne and Reed 1986, Rustagi 
and Loveless 1991, Zhang et al. 2002, Jordan 
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et al. 2005); and (vii) a nonparametric tech-
nique (M’Hirit and Postaire 1985). The poly-
nomial approaches treat the stem as an entire 
bole. Therefore, a single polynomial function 
is used with 2 or more terms in the regression 
equations, and terms are raised to powers as 
high as 40 to ensure a good fit at the base of 
the stem (Bruce et al. 1968). Advocates of the 
variable form approach consider variations in 
form between and within trees, and developed 
functions based on the assumption that within 
a tree the form of the stem (i.e., the geometric 
shape) varies continuously along the stem 
(Newberry and Burkhart 1986, Kozak 1988, 
Perez et al. 1990, Newnham 1992). 

Taiwania (Taiwania cryptomerioides) is 
the major plantation species in the Liukuei 
Experimental Forest. The inventory shows 
that by the end of 1991, 1560 ha of forest was 
in plantations, accounting for approximately 
16.22% of the total area. Among these, 51.6% 
were covered by Taiwania (TFRI 1992). 
While several studies regarding Taiwania 
plantation growth have been conducted in 
the past (Chen et al. 1997, Chen and Huang 
1999, Wang et al. 2004), no work on stem 
profiles of Taiwania plantation trees has been 
done. Therefore, the purpose of this study 
was to develop a taper model and to compare 
the accuracy and precision of taper prediction 
among several approaches. 

MATERIALS AND METHODS

Data for this study came from Taiwanian 
plantations of Liukuei Experimental Forest of 
Taiwan Forestry Research Institute (TFRI), 
southwestern Taiwan. Sample trees from plan-
tations of Taiwanian in compartment 3, 10, 
12, 14, 18, 20, and 24 were included in this 
study. Single-stemmed trees without broken 
tops of a variety of tree sizes in diameter at 
breast height (DBH) and in total height were 

selected for felling. Diameters on the outside 
of the bark were measured at ground stump 
height (0.3 m), breast height (1.3 m) and ev-
ery 1-m height interval above breast height. 
The total height and crown base height were 
also recorded for each individual tree. More-
over, the boles of trees were cut into sections. 
The discs at stump height, breast height, and 
2-m intervals in height above 1.3 m for each 
tree were carried into the laboratory for a 
stem analysis. All individual measurements 
of diameter and height pairs for trees were 
randomly divided into fitting and validation 
subsets. Seventy percent of the sample, or 51 
trees with 1208 diameter/height observations, 
was used for fitting the taper models, and the 
remaining 22 trees with 461 observations 
were used for model testing. 

Five tapering modeling approaches were 
applied and compared in this study. The asso-
ciated mathematical expressions of formula-
tion for each was given below

1. Sigmoid form approach
The Chapman-Richards function is 

widely used to estimate tree growth patterns. 
Biging (1984) claimed that the sigmoid form 
usually shown in tree growth can be also used 
to describe the tree stem profile through an 
effective transformation. Therefore, based on 
the integral form of the Chapman-Richards 
function, Biging proposed a taper model for 
second-growth mixed conifers in northern 
California. Equation (1) shows the formula of 
this model: 
d = DBH*{b1 + b2* ln [1 - λ (h / HT)1/3]};	 (1) 
where d is the diameter outside and/or the 
diameter inside bark (cm) at a specific height 
h from the ground, DBH is the diameter out-
side bark at breast height (cm), h is the height 
at a specific point on the bole (m) from the 
ground, HT is the total tree height (m), λ is 
1- exp (-b1 / b2), and b1 and b2 are estimated 
parameters.
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Equation (1) implies a constrained form 
of the taper equation that is forced to go 
through the tip of the tree (i.e., d = 0 when h 
= HT).

In addition to the growth function used to 
express the tapering sigmoid form, Ormerod 
(1973) proposed a simple-form taper model 
as shown as equation (2):
d = DBH*[(HT - h) / (HT - 1.3)]b1;	 (2)
where b1 is an estimated parameter.

All other variables in equation (2) are the 
same as those in equation (1). This function 
has been so conditioned that d equals to 0 at 
the top of tree and d equals DBH at the height 
of 1.3 m. Moreover, if the fitted exponent b1 
is < 1, the shape of the hole will be parabolic, 
and if > 1, then it will be neiloidal.

2. Polynomial form approach
A. Lower order

Kozak et al. (1969) proposed a polyno-
mial taper model with a degree of 2: 
(d / DBH) = b1*(h / HT - 1) + b2*[(h / HT)2 - 
1];	 (3)

All variables in equation (3) are the same 
as those in equation (1). The same as equation 
(1), equation (3) satisfies the constraint of the 
tip pass requirement. 
B. Higher order

To improve the accuracy and precision in 
describing the root swell and tip, Bruce et al. 
(1968), using the relative height rather than 
the absolute height, derived a polynomial ta-
per model with high orders up to 40:
d2 = DBH2*{ b1*X1.5*(10-1) + b2*(X1.5- X3)*
DBH*(10-2) + b3*(X1.5- X3)*HT*(10-3) + b4*
(X1.5- X32)*HT*DBH*(10-5) + b5*(X1.5- X32)*
HT1/2*(10-3) + b6*(X1.5- X40)*HT2*(10-6)};
	 (4)
where X is (HT - h) / (HT - 1.3), and all other 
variables are the same as those in equation (1). 
Equation (4) also meets the tip pass require-
ment. 

3. Segmented polynomials with submodels
Segmented polynomial models consist of 

a sequence of grafted submodels. In the case 
of the taper profile, the entire bole is parti-
tioned, and a different polynomial submodel 
is defined for each section of the partition. 
Then, these submodels are grafted to form 
the segmented polynomial model. Generally, 
to meet the smooth requirement of the stem 
profile, restrictions that function for each sub-
model must be continuous and have continu-
ous first- or higher-order derivatives have to 
be imposed on the model (Gallant and Fuller 
1973).

In the case of 1 joint point of 2 submod-
els, Max and Burkhart (1976) proposed a 
2-quadratic segmented submodel as Equation 
(5):
d2 / DBH2 = b1*(h / HT - 1) + b2*[(h / HT)2 - 1] 
+ b3*(α - h / HT)2*I+ (α - h / HT);	 (5)
where d is the diameter outside and/or the 
diameter inside bark (cm) at a specific height 
h from the ground, DBH is the diameter 
outside bark at breast height (cm), h is the 
height at a specific point on the bole (m) from 
the ground, HT is the total tree height (m), 
α is a joint point of the submodels, I+ (α - h 
/ HT) is a dummy variable with a value of I+ 
(α - h / HT) either = 1, if α ≧ h / HT, or = 0, 
otherwise, and b1, b2, b3, and α are estimated 
parameters. 

Equation (5) can be extended to the case 
of 2 joint points of 3 submodels as in Equa-
tion (6):
d2 / DBH2 = b1*(h / HT - 1) + b2*[(h / HT)2 - 1] 
+ b3*[(α1 - h / HT)2*I+ (α1 - h / HT)] + b4*[(α2 
- h / HT)2*I+ (α2 - h / HT)];	 (6)
where α1 and α2 are 2 joint points of the sub-
models, I+ (α1 - h / HT) is a dummy variable 
with a value of I+ (α1 - h / HT) either = 1, if α1 

≧ h / HT, or = 0, otherwise, I+ (α2 - h / HT) 
is a dummy variable with a value of I+ (α2 - h 
/ HT) either = 1, if α2 ≧ h / HT, or = 0, oth-
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erwise, and b1, b2, b3, b4, α1, α2 are estimated 
parameters.

Parameters b1 and b2 in equation (6) are 
used to describe the profile of the tree top sec-
tion with a condition of tip pass requirement. 
Parameters b3 and b4 are designed to represent 
the middle and lower sections of the tree bole, 
respectively. Equation (6) is also referred to 
as a quadratic-quadratic-quadratic model.

4. Variable-form stem profile models
While the advantage of the segmented 

submodels approach is that diameters are pre-
dicted with less bias than by a single function 
representing most parts of stem, the associat-
ed disadvantage is the difficulty in estimating 
the parameters (Kozak 1988). An alternative 
approach, the so-called a variable-form taper 
function, was introduced by Kozak (1988) 
and Newnham (1992) to describe the shape 
of the stem with a continuous function using 
a continuously changing exponent in a single 
function to compensate for the form changes 
of different tree sections.

The variable-exponent taper model pro-
posed by Kozak (1988) has the following 
form:
d = b1*DBHb2*b3

DBH*YC;	 (7)
where d is the diameter outside and/or the 
diameter inside bark (cm) at a specific height 
h from the ground, DBH is the diameter out-
side bark at breast height (cm), h is the height 
at a specific point on the bole (m) from the 
ground, HT is the total tree height (m), Y is (1 
- sqrt (Z)) / (1 - sqrt (I)), Z is h / HT, I is the 
location of the inflection point, C is b4*Z2 + 
b5*ln (Z + 0.001) + b6*sqrt (Z) + b7*eZ + b8 
*(DBH / HT), and b1 ~ b8 are parameters to be 
estimated.

Equation (7) has the property that the 
diameter equals 0 at the top of the tree. In ad-
dition, d equals the estimated diameter at the 
inflection point and the function changes the 
direction when h / HT = I.

5. Trigonometric taper models
In addition to the polynomials used to 

describe the taper curve, trigonometric func-
tions have also been applied to model the 
bole taper due to the fact that trigonometric 
functions on the unit circle have a direct anal-
ogy to the relative height vs. relative diameter 
plots shown in many taper equations. Thomas 
and Parresol (1991) proposed a trigonometric 
taper function represented by the equation (8):
d2 / DBH2 = b1*(R - 1) + b2*sin (c*π*R) + b3 

*cotan (π*R/2);	 (8)
where d is the diameter outside and/or the 
diameter inside bark (cm) at a specific height 
h from the ground, DBH is the diameter 
outside bark at breast height (cm), h is the 
height at a specific point on the bole (m) from 
the ground, HT is the total tree height (m), 
arguments for trigonometric functions are ex-
pressed in radians, R is h / HT, c is 1.5 for the 
softwood, and 2.0 for the hardwood, and b1, 
b2, and b3 are estimated parameters. 

The precision and accuracy of all tree 
profile prediction systems were evaluated by 
using the following 5 criteria in terms of di-
ameters at different bole heights:
1) average bias (cm) = Σ (di - dihat) / n,
2) average bias (%) = Σ ((di - dihat) / di*100) / n,
3) average absolute bias (cm) = Σ abs ((di - 
dihat) / n),
4) standard error of the estimate (SEE) (cm) = 
Sqrt (Σ (di - dihat)

2 / (n - m - 1)), and
5) Mean squared error (MSE) = Bias2 + Vari-
ance;
where dihat is predicted at height hi and di is 
the actual measurement at point i with height 
hi on the bole, m is the number of parameters 
in the models, and n is the number of points 
in a specified region of relative height, say 
0.1~0.2 of total height.

Since it reveals the potentially different 
capabilities inherent in describing tapering 
on the portion of the stem of the models used 
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in this study, the comparisons of prediction 
power among models should focus not only 
on the entire stem but also on individual parts 
of the stem (Biging 1984, Bailey 1994). In 
this study, a relative height with 5 levels (e.g., 
10~20%, 20~40%, 40~60%, 60~80%, and 
80~100%) of the total height was used to 
identify segments of the stem above the DBH 
height.

RESULTS AND DISCUSSION

As smaller trees have limited potential 
for multiproduct utilization and huge trees 
are rare and often unavailable for commercial 
harvest, only trees of Taiwanina plantations 
with DBH ranging from 17.5 to 55.0 cm 
were used in this study. Bark thickness was 
determined from a stem analysis to estimate 
the diameter inside the bark. The distribution 
of DBH and tree height on sample trees is 
shown in Table 1. In this study, measurements 
at ground level were not used because they 
were suspected of degrading model perfor-
mance in the lower main stem, and dimen-

sions below the stump level are less important 
than the lower bole for commercial utilization 
standards (Czaplewski and McClure 1988).

Observations of sample trees used to 
estimate the parameters were randomly and 
proportionally selected from each 5 cm of 
diameter at breast height and 2-m height 
classes. Selection of observations in this way 
provided a wide range of tree sizes, which 
is necessary for good parameter estimation 
(Kozak 1988). Usually, when taper equations 
are fitted, the parameters are estimated from 
a subset of the data (fitting dataset), and then 
the equation is evaluated on the remainder of 
the observations (validation dataset). The es-
timated coefficients and their standard errors 
for all models are presented in Table 2.

The ratio of DBH to total height HT is 
an indicator that is widely used to estimate 
the form or the slenderness of tree boles (Hann 
et al. 1987, Kozak 1988). Figure 1 shows the 
effect of DBH/HT on taper based on observa-
tions of 2 sample trees. The taper curve on a 
higher slender tree (i.e., less DBH/HT) in the 
lower stem first lies below that on a less slen-

Table 1. Distribution of sample trees by diameter at breast height (DBH) and total height

DBH (cm)
	 Height (m)

	 < 10	 10~12	 12~14	 14~16	 16~18	 18~20	 20~22	 22~24	 24~26	 26~28	 28~30	 > 30
< 10												          
10~15												          
15~20				    3	 3							     
20~25			   2	 3	 2	 1						    
25~30			   1	 1	 2	 3	 7	 1				  
30~35					     3	 6	 5	 4				  
35~40						      6	 5	 2				  
40~45						      3	 4	 3		  1		
45~50							       1					   
50~55												            1
Total			   3	 7	 10	 19	 22	 10		  1		  1
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der tree, then crosses at a point and reverses 
direction afterwards. In other word, given the 
same DBH, different DBH/HT trees will re-
sult in various tapering rates at different por-
tions of stem. Consequently, it is desirable to 
take DBH/HT into account in fitting the taper 

models. 
A positive correlation between the taper 

rate and height was demonstrated in this study 
for both the diameter outside the bark (r = 
0.565, p = 0.000) and the diameter inside the 
bark (r = 0.497, p = 0.000). Generally, a re-
markable taper rate (over 10% on average for 
the fitted trees) was found in the bole between 
the stumpage height and breast height. Then 
a less notable taper rate change was detected 
with an increase in bole height up to the 
height at the crown base (HCB). Finally, an 
eminent taper rate occurred again within the 
crown. This finding supports that taper rates 
below the crown are less than those within 
the crown (Larson 1963).

The diameter inside the bark at an ob-
served height was obtained by stem analysis. 
Both the taper in the diameter inside the bark 
and the diameter outside the bark were inves-
tigated in this study. 

Table 2. Estimated coefficients and their standard errors (in parentheses) of the diameter 
outside the bark for all models based on the fitting data
	 Model	 Parameters
equation	 b1	 b2	 b3	 b4	 b5	 b6	 b7	 b8	 α1	 α2

	 1	 1.3024	 0.5514
		  (0.0064)	 (0.00881)								      

	 2	 0.8037
		  (0.0071)									       

	 3	 -0.8055	 -0.2849
		  (0.0259)	 (0.0206)								      

	 4	 9.93093	 -0.92173	 21.91413	 -15.93014	 17.01946	 -160.31739
		  (0.0701)	 (0.24949)	 (4.15771)	 (1.75591)	 (2.47392)	 (30.04769)

	 5	 -1.60041	 0.56437	 87.55962						      0.1
		  (0.0337)	 (0.02586)	 (2.0045)					   

	 6	 -3.80657	 1.84400	 -1.49027	 91.26368					     0.1	 0.8
		  (0.4759)	 (0.27653)	 (0.32066)	 (2.13497)

	 7	 0.9068	 0.9827	 0.9986	 1.6325	 -0.3710	 2.3590	 -1.3042	 0.18253
		  (0.1669)	 (0.0744)	 (0.00228)	 (0.1476)	 (0.0342)	 (0.3448)	 (0.1833)	 (0.0103)		

	 8	 -0.99795	 -0.05134	 -0.000160		
		  (0.0100)	 (0.00836)	 (0.000186)

Fig. 1. Effects of diameter at breast height 
(DBH)/total heigh (HT) on taper based on 
observations of 2 sample trees.
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Tapering in the diameter outside the 
bark

Comparisons among all models indicated 
that for the overall tree bole, except for model 
equation (8), a small average bias in diameter 
was detected in both the fitting dataset (Table 
3) and validation dataset (Table 4). However, 
the difference in the absolute average bias ap-
peared to be greater for all models. In relative 
terms, the mean biases in percentage were 
under 4% for all equations expect equation 8 
in both datasets (Tables 3, 4). As evaluated by 

the first 3 criteria considered simultaneously, 
the trigonometric taper modeling approach 
was the worst in describing the taper of the 
entire tree bole, followed by the sigmoid 
form approach. On the other hand, segmented 
polynomials, a variable-form stem profile 
and a polynomial form with a higher-order 
approach were preferred to estimate the taper 
in the entire stem (Tables 3, 4). As a biased 
estimator with small variance may be prefer-
able to an unbiased estimator with a large 
variance, the MSE was also used to evaluate 

Table 3. Comparison of bias and standard error of estimating the diameter outside the bark 
among models for the entire tree bole based on the fitting data
	 Bias
	 Model

	 Average	 Percentage	 Absolute	
Standard	 MSE

	 Rankequation
	 (cm)	 average (%)	 average (cm)	

error (cm)	 (cm2)
	

	 1	 0.15	 2.03	 1.30	 1.86	 3.46	 5
	 2	 0.02	 0.56	 0.91	 1.90	 3.65	 6
	 3	 0.16	 3.21	 1.64	 2.40	 5.76	 7
	 4	 -0.13	 -3.40	 0.98	 1.41	 1.98	 2
	 5	 -0.26	 -3.81	 1.26	 1.77	 3.11	 4
	 6	 -0.17	 -2.40	 1.06	 1.50	 2.24	 3
	 7	 -0.05	 -0.42	 0.87	 1.28	 1.62	 1
	 8	 -2.02	 -27.80	 3.11	 4.20	 17.59	 8
MSE, mean square error.

Table 4. Comparison of bias and standard error of estimating the diameter outside the bark 
among models for the entire tree bole based on the validation data
	 Bias
	 Model

	 Average	 Percentage	 Absolute	
Standard	 MSE

	 Rankequation
	 (cm)	 average (%)	 average (cm)	

error (cm)	 (cm2)
	

	 1	 -0.18	 0.69	 1.52	 2.43	 5.92	 5
	 2	 0.17	 0.27	 1.51	 2.55	 6.53	 6
	 3	 -0.16	 2.82	 1.99	 2.72	 7.37	 7
	 4	 0.35	 -2.23	 1.65	 2.38	 5.85	 4
	 5	 -0.85	 -3.87	 1.57	 2.23	 4.94	 2
	 6	 -0.53	 -3.56	 1.36	 1.97	 3.82	 1
	 7	 -0.69	 -0.70	 1.34	 2.36	 5.46	 3
	 8	 -2.72	 -29.20	 3.70	 5.06	 25.5	 8
MSE, mean square error.
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the diameter estimators (Coble and Wiant Jr 
2000). The rank of models based on MSE is 
listed in Tables 3 and 4.

While there was no overall consistency 
found in the rank for both data sets, the rela-
tive advantage among models was quite simi-
lar in the 2 cases. Overall, the performance of 
the validation dataset was slightly inferior to 
that of the fitting dataset. All models used, ex-
cept for equation (8), displayed no bias with 
respect to the total height. However, only 
equation (2) displayed no bias with respect to 
DBH.  

Table 5 summarizes the average bias for 
all models for different segments of the stem 
along the tree bole. In the entire-bole system 
approach, only 1 mathematical formula was 
used to represent the entire tree file, therefore, 
it is very difficult to fit it effectively. Even the 
most complicated models may fit 1 portion 
of the tree very well but show considerable 
bias elsewhere (Demaerschalk and Kozak 
1977). This study shows that neither model 
with the sigmoid-form approach could predict 
root swell well (bottom end of the stem) even 
though they performed well for other parts 
of the stem bole (e.g., the middle part or the 
canopy end of the stem axis) (Table 5). It is 
therefore suggested that using different func-
tions for the lower and upper bole can consid-

erably improve the prediction system. 
Compared with other types of taper 

models, while the polynomial with low power 
is the easiest model to be fitted, its goodness 
of fit or predicting ability is quite poor, espe-
cially in describing the lower part of the stem 
such as the stump or sections at 0.3~1.3 m, 
1.3 m~0.1 HT, and 0.1~0.4 HT. However, the 
handicap in describing the lower part of a tree 
bole can be highly improved by using high 
powers of relative height (Table 5). In sec-
tion 0.3~1.3 m, for example, the average bias 
(2.26) for equation (4) was only about 1/2 
of that revealed by equation (3) (5.25). The 
improvement in using a high power was more 
noticeable if the average bias in percentage 
criterion was used (Table 6). In equation (4), 
only the 3/2 and 3rd powers were needed to 
describe the upper 4/5 of the bole with a simi-
lar accuracy as shown in equation (3) (Bruce 
et al. 1968).

All graphs clearly showed that the 
overall shape of the trees is very much the 
same for all size classes (Fig. 2). Therefore, 
the inflection point (the point where the tree 
form changes from neiloid to paraboloid) ap-
pears to be at a more or less constant relative 
height, regardless of the size class. Because 
the diameter at the inflection point is not af-
fected by root swell and is located in the 

Table 5. Average biases of estimating the diameter outside the bark (cm) from the ground to 
the top for all models based on the validation data
	 Height from	 Sample	 Model equation
	 the ground	 size	 1	 2	 3	 4	 5	 6	 7	 8
0.3 ~1.3 m	 22	 2.29	 6.51	 5.25	 -2.26	 -1.84	 -1.87	 -2.88	 7.74
1.3 m ~ 0.1 HT	 24	 -2.19	 -0.15	 -1.61	 0.60	 -1.12	 -0.91	 -0.62	 0.80
0.1 ~ 0.2 HT	 45	 -1.82	 -1.08	 -2.54	 1.32	 -0.19	 -0.07	 0.20	 -1.01
0.2 ~ 0.4 HT	 88	 -1.01	 -1.02	 -2.21	 0.61	 -0.61	 -0.76	 -0.17	 -2.63
0.4 ~ 0.6 HT	 89	 0.15	 0.13	 0.35	 0.71	 -0.27	 -0.51	 -0.04	 -3.49
0.6 ~ 0.8 HT	 88	 0.60	 0.69	 1.14	 0.56	 -0.70	 -0.40	 0.54	 -4.80
0.8 ~ 1.0 HT	 105	 0.25	 0.06	 0.86	 -0.26	 -1.68	 -0.29	 0.31	 -4.15
HT, total height.
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least changing part of the stem, it is the base 
diameter for the taper system (Demaerschalk 
and Kozak 1977). The profiles above and 
below the inflection point are so smooth that 
2 models were considered to be sufficient to 
adequately describe the tree profile. These 2 

functions can be linked at the inflection point 
and be conditioned to be continuous at that 
point.

In segmented polynomials with sub-
model taper models, a considerable number 
of different joints were fitted to the data and 

Table 6. Average biases of estimating the diameter outside the bark in percentage ( ) from 
the ground to the top for all models based on the validation data
	 Height from	 Sample	 Model equation
	 the ground	 size	 1	 2	 3	 4	 5	 6	 7	 8
0.3 ~ 1.3 m	 22	 5.49	 15.07	 12.32	 -4.10	 -4.11	 -4.17	 -5.47	 18.03
1.3 m ~ 0.1 HT	 24	 -5.31	 -0.24	 -3.90	 1.07	 -1.88	 -1.29	 -0.82	 2.66
0.1 ~ 0.2 HT	 45	 -4.95	 -3.05	 -7.21	 2.25	 -0.11	 0.25	 0.72	 -2.54
0.2 ~ 0.4 HT	 88	 -2.70	 -3.03	 -6.99	 0.35	 -1.35	 -1.92	 -0.90	 -8.69
0.4 ~ 0.6 HT	 89	 0.47	 0.17	 -1.66	 -0.06	 -1.52	 -2.64	 -2.50	 -16.28
0.6 ~ 0.8 HT	 88	 1.88	 2.25	 5.99	 -1.80	 -7.5	 -4.97	 -1.22	 -36.21
0.8 ~ 1.0 HT	 105	 5.51	 -0.08	 16.03	 -9.17	 -37.8	 -6.76	 1.87	 -80.31
HT, total height.

Fig. 2. Plotting of tree profile for different size classes in sample trees. Dob is the diameter 
outside the bark at a given height (h), DBH is the diameter outside the bark at the breast 
height, and HT is the total tree height.
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the 1 with the least MSE was picked up in 
both equations (5) and (6). This study shows 
a slight improvement with the 2-joint sub-
model over the 1-joint submodel in prediction 
ability over most segments, but with a notable 
promotion on the segment close to the tip. 
Therefore, it was used to compare with mod-
els of other approaches. This is because for-
mulating a taper model by splining together 3 
polynomials could describe the profile of 1 of 
the 3 segments for each polynomial (Valentine 
and Gregoire 2001). The joints in equation (6) 
shown in this study are quite similar to those 
in the plantation taper equation study (Max 
and Burkhart 1976). 

Kozak (1988) mentioned that a general 
shape of diameter tapering from ground to 
top can be described using a single continu-
ous function as the base with an exponent 
that changes along the stem to account for the 
neiloid, paraboloid, and conic forms. Such 
a power function eliminates the necessity of 
developing segmented taper functions for dif-
ferent portions of the stem in order to reduce 
local bias (Bi 2000). A study of the various 
forms of the exponent indicated that the ex-
ponent can be expressed as a multiple curvi-
linear regression (Kozak 1988). The exponent 
from ground to top for different sizes of trees 
from Taiwania plantations in this study indi-
cated that the exponent value is variable at 
different relative heights from the ground (Fig. 
3). The general trend of the exponent was 
similar for different tree sizes of Taiwania. 
It can be observed that the inflection point 
seems to be quite constant (almost 0.25) re-
gardless of the tree size, and the curves with 
higher DBH/HT values lie above those with  
lower DBH/HT values.

In the variable-form taper model, an in-
flection point at 25% of the total height was 
chosen. Setting the location of inflection at 
15, 20, 30, and 35% of the total height had 

little effect on the predictive property of the 
model. This trial is consistent with what Perez 
et al. did (Perez et al. 1990). While Kozak’s 
(1988) taper function is quite precise, Kozak 
(1998) mentioned that there is still room to 
improve its effectiveness by incorporating an 
additional upper stem diameter measurement. 
However, caution must be taken to reduce 
errors in both stem diameter and height from 
the ground measurements.

By explicitly taking the various ex-
ponents into account in depicting the taper 
profile, the variable-form taper equations fit 
the data significantly better, especially for the 
lower part of the stem, than the entire-bole 
estimating system such as the sigmoid form 
(Table 5).

The root swell (the section of bole at 
a height between 0.3 and 1.3 m) is the part 
of the stem that is most difficult to predict 
with tapering modeling. Most models tend to 
underestimate the region below DBH with a 
substantial divergence in amount (Table 5), 
and the mean bias percentage ranged from an 
18.03% underestimate to an 5.47% overesti-
mate (Table 6). The accuracy in the predict-
ing the tree root swell can be significantly 
improved through use of a polynomial with a 
much higher power, segmented polynomials, 

Fig. 3. Changes in exponents for 5 Taiwan-
ia plantation trees. DBH, diameter at the 
breast height.
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or the variable-form taper models. 
The advantages of segmented polynomi-

als or variable-form taper models are also 
shown by the evaluation criteria of both the 
average absolute biases and standard errors 
of the estimates (Tables 7, 8). It is quite in-
teresting to determine the relative height of 
the crown base height because this is a point 
where a great difference occurs in taper rates 
along the bole. This study showed that the 
average relative height of the crown base of 
Taiwania is about 40% of the total height. 
Because the rapid taper occurs, it appears 
that the precision of estimates at the lowest 
portion of the bole is the worst, followed by 
segments within the live crown (i.e., the seg-

ment from the tip to a point at 40% of the 
total height) for most models. One can obtain 
a higher precision in predicting the segments 
between the root swell and the base of the 
crown. 

While the variable-form taper models 
and segmented polynomial models are very 
powerful at predicting the diameter at a given 
height, they both have 2 primary weaknesses: 
(1) numerical integration methods must be 
used to calculate the volume; and (2) iterative 
methods must be used to find the merchant-
able height to a given diameter. But, both 
shortcomings are relatively easy to solve with 
modern computing equipment or facilities 
(Perez et al. 1990).

Table 7. Average absolute biases of estimating the diameter outside the bark (cm) from the 
ground to the top for all models based on the validation data
	 Height from	 Sample	 Model equation
	 the ground	 size	 1	 2	 3	 4	 5	 6	 7	 8
0.3 ~ 1.3 m	 22	 2.63	 6.51	 5.25	 3.2	 2.70	 2.72	 3.72	 7.74
1.3 m ~ 0.1 HT	 24	 2.19	 0.15	 1.61	 0.60	 1.43	 1.31	 0.86	 0.80
0.1 ~ 0.2 HT	 45	 1.87	 1.12	 2.56	 1.52	 0.77	 0.78	 0.72	 1.35
0.2 ~ 0.4 HT	 88	 1.47	 1.35	 2.33	 1.58	 1.23	 1.30	 0.96	 2.71
0.4 ~ 0.6 HT	 89	 1.52	 1.51	 1.67	 2.09	 1.55	 1.63	 1.73	 3.67
0.6 ~ 0.8 HT	 88	 1.80	 1.85	 2.08	 2.09	 1.80	 1.69	 1.82	 4.92
0.8 ~ 1.0 HT	 105	 0.81	 0.79	 1.08	 0.95	 1.83	 0.91	 0.82	 4.36
HT, total height.

Table 8. Standard error of the estimating the diameter outside the bark (cm) from the 
ground to the top for all models based on the validation data
	 Height from	 Sample	 Model equation
	 the ground	 size	 1	 2	 3	 4	 5	 6	 7	 8
0.3 ~ 1.3 m	 22	 3.73	 7.97	 6.69	 4.23	 3.67	 3.94	 6.21	 7.84
1.3 m ~ 0.1 HT	 24	 3.03	 0.63	 2.31	 2.08	 2.64	 2.63	 1.88	 1.94
0.1 ~ 0.2 HT	 45	 2.39	 1.48	 3.12	 4.07	 1.05	 1.06	 1.10	 1.87
0.2 ~ 0.4 HT	 88	 1.92	 1.73	 3.02	 3.46	 1.60	 1.72	 1.34	 3.39
0.4 ~ 0.6 HT	 89	 2.10	 2.12	 2.22	 4.25	 2.12	 2.21	 2.98	 4.61
0.6 ~ 0.8 HT	 88	 2.50	 2.52	 0.67	 3.70	 2.70	 2.58	 3.28	 6.27
0.8 ~ 1.0 HT	 105	 1.24	 1.21	 1.49	 1.47	 2.61	 1.39	 1.50	 6.09
HT, total height.
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Generally, tree taper variations might be 
caused by differences in stand, tree, and site 
characteristics as well as stand history (Larson 
1963, Muhairwe et al. 1994). However, Mu-
hairwe et al. (1994) showed that incorporating 
stand, tree, and site variables into the vari-
able-form exponent of Kozak’s (1988) taper 
equation did not result in large improvements 
in predicting the diameter. Therefore, the cost 
of measuring these additional variables is not 
justified. No attempt was made to evaluate the 
effects of stand density or site characteristics 
on tree taper in this study because the proper 
data are not available.  

Quite a few taper studies are available 
in Taiwan. Compared with other studies, the 
ability to predict the bole profile of Taiwania 
plantation trees demonstrated in this study 
is not as good as those carried out by other 
studies, particularly with respect to segment 
estimation. This is because the sample size 
of measurements available in this study was 
quite smaller than those in other studies (Big-
ing 1984, Perez et al.1990). 

In conclusion, although there is still a 
slight bias near ground level (< 6%), for the 
3-segmented polynomial models and vari-
able-exponent models, their prediction of di-
ameters outside bark had < 3% bias over most 

of the lengths of the trees. Therefore, these 2 
tree profile prediction systems describe the 
tree shape more realistically than any other 
taper system we tested.

Tapering in the diameter inside the bark
The diameter inside the bark (DIB) at an 

observed height was obtained by using the 
linear regression of the DIB on the diameter 
outside the bark (DOB) based on the data 
from the stem analysis. The resultant regres-
sion was DIB = -0.274 + 0.979*DOB with 
r2 = 0.996. In general, comparisons of model 
performance discussed with tapering in DOB 
sections are valid for DIB as well. The esti-
mated coefficients and associated standard 
errors for preferred models are listed in Table 
9 for practical reference purposes. 

The total volume or merchantable vol-
ume can be obtained by mathematically in-
tegrating the taper equation from ground to 
tip or to a merchantable height. A compatible 
relationship among them accordingly exists 
(Reed and Green 1984, Jordan et al. 2005). 
Since the purpose of this study was exclu-
sively focused on the taper, no attempt to 
consider the mathematical relationship among 
taper, total volume, and merchantable volume 
was made. However, because of its great 

Table 9. Estimated coefficients and their standard errors (in parentheses) of the estimated 
diameter inside the bark for models based on the fitting data
	 Model	 Parameters
equation	 b1	 b2	 b3	 b4	 b5	 b6	 b7	 b8	 α1	 α2

	 4	 9.39506	 -0.73072	 17.25352	 -16.13514	 15.47089	 -139.06228
		  (0.0841)	 (0.249795)	 (4.96539)	 (2.09701)	 (2.95451)	 (35.91704)

	 6	 -3.03218	 1.42503	 -1.01493	 87.47377					     0.1	 0.8
		  (0.5542)	 (0.3221)	 (0.37346)	 (2.48649)

	 7	 0.7723	 1.0315	 0.9973	 1.6217	 -0.3671	 2.2974	 -1.2737	 0.1872
		  (0.1845)	 (0.0965)	 (0.00295)	 (0.1908)	 (0.0443)	 (0.4477)	 (0.2378)	 (0.0148)
Model 4, high-order polynomial approach.
Model 6, 3-segmented polynomial approach.
Model 7, variable-form approach.
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importance, development of a system of a 
compatible volume-taper model for Taiwania 
plantation should be pursued in the future.

CONCLUSIONS

As the demand for forest products is 
generally increasing with time while the land 
base for producing forest products is decreas-
ing around the world, accurate estimates of 
individual tree volumes are needed to make 
a better determination the potential value of 
standing trees for use as solid wood products, 
fiber, or fuel. The taper system is used mainly 
to predict volumes inside and/or outside the 
bark of logs, tops, and stumps on standing 
trees. Taper function provides the way to pre-
dict the diameter at any height and the height 
at any diameter based only on tree measure-
ments of DBH and the total height commonly 
taken in inventories, thereby enhancing the 
value of any forest inventory from the predic-
tion of total to merchantable volumes to any 
merchantability limits.

The root swell (0.3 to 1.3 m) is a part 
of the stem that is most difficult to predict in 
tapering modeling. However, the precision 
and accuracy in predicting the tree root swell 
can be significantly improved through the use 
of segmented polynomials or variable-form 
taper models. Together with their excellence 
in predicting the stem diameters over most 
of the segments of the trees, therefore, the 
3-segmented polynomials or the variable-
form taper models are thought to be superior 
to others in estimating the bole profile of Tai-
wania plantation trees.
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