林木資源才是全球生質能源的主角

⊙林業試驗所森林利用組·林裕仁 (yujen@tfri.gov.tw)、潘薇如

前言

2015年12月由聯合國195個成員國於 法國巴黎COP 21擬定「巴黎協議」(Paris Agreement),冀望能共同降低溫室氣體排放量 以遏阻全球暖化,主要目標係將全球平均氣 溫之升幅,控制在不超過工業革命前的2℃之 內。同年,我國亦通過「溫室氣體減量及管 理法」,明訂於2050年排碳量需降低至2005 年的50%。

對此,國內外皆積極提升再生能源使用 比例,經濟部能源局表示,為推動能源結構 轉型機制,2025年預期達成再生能源20%、燃 煤30%及天然氣50%之低碳能源發電配比,相 較於現今再生能源發電比例4.8%仍有相當大 的進步空間。然再生能源使用類別廣泛,例 如太陽能、生質能、潮汐能以及地熱能等皆 屬之,本研究欲洞察全球生質能源趨勢,以 探討我國生質能源運用之現況。

全球再生能源消費結構

能源消費係指各種能源透過燃燒產生熱

能及電能等型態,運用於不同生產及生活需求(如工業、商業、住宅及運輸等)所消耗之能源總量,國際間以焦耳表示其能量單位。2000~2014年期間,全球能源消費量每年增長率約2.1%,其中以石油和石油相關產品為最大的能源消費來源,約占總消費量38%,多用於運輸產業;其次為天然氣及煤等。值得注意的是,全球再生能源消費量自2000年開始,每年以2.5%增長率攀升,2014年能源消費量約為67 EJ(百萬兆焦耳),占總能源消費量約18.6%(詳見表1),將其與2000年47.6 EJ(百萬兆焦耳)相較可知,漲幅高達40%,僅小幅略低於天然氣及煤。

再生能源消費型態類別,概可分為生質能、水力、風力、太陽能及其他能源,參照2014年全球再生能源消費占比18.6%中,生質能占14%位居首位,再者依序為水力3.3%、風力0.6%、太陽能0.5%及其他能源0.2%(詳見圖1);另根據國際能源總署(IEA)統計,生質能為全球第四大能源,提供開發中國家能源占比達35%,顯見,生質能源已成為目前最為廣泛使用的再生能源。

表1 全球能源消費型態及消費量

單位:EJ(百萬兆焦耳)

	總計	煤	石油	天然氣	核能	再生能源	再生能源 占比(%)
2000	269	43.3	115	55.7	7.65	47.6	17.7
2005	305	57.6	125	61.6	8.22	52.1	17.1
2010	338	70.7	129	69.8	8.25	60.1	17.8
2014	360	76.3	136	73.2	7.59	66.9	18.6
增長率(%)	2.1	4.1	1.2	2.0	-0.1	2.5	

資料來源:世界生質能源協會(2017)

2014年全球能源消費結構

2016年臺灣初級能源消費結構

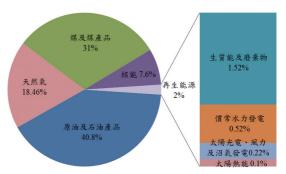


圖1 全球與臺灣能源消費結構。

藉此檢視臺灣的初級能源消費型態,依據2016年經濟部能源局統計年報得知,我國能源消費以原油及石油產品為主,約占40.8%,其次為煤及煤產品31.06%、天然氣18.46%、核能7.6%及再生能源2.09%;其中再生能源占比依序為生質能及廢棄物1.25%、慣常水力發電0.52%、太陽光電、風力及沼氣發電0.22%、太陽熱能0.1%。在初級能源消費型態中,臺灣係將生質能及廢棄物兩者歸為一類合併計算,主要用於發電與汽電共生93.19%,其次為工業部門6.8%及油品摻配0.01%。

再生能源運用於電力產業

近年來全球再生能源發電量平均每年以 4.5%的速度增長,水力為主要的燃料來源, 2014年水力發電量為3,983 TWh(兆瓦時),占 總發電量約73%,然相較於2000年水力發電量 2,950 TWh(兆瓦時),發電占比高達92%,已呈 大幅下降之趨勢,概因於利用太陽能與風能發 電之技術漸趨成熟,再加上相關政策的推動, 順勢帶動該項產業的興起。另外,生質能源為 再生能源第三大發電主力,2014年發電量為493 TWh(兆瓦時),高於太陽光電發電量約2.6倍。

參照2016年經濟部能源局統計年報,臺灣再生能源占總發電量約4.8%,其中慣常水力發電亦為發電量最高者,占再生能源發電量約52.1%,其次為廢棄物能發電25.8%、風力發電11.6%、太陽光電9%及生質能發電1.5%。

由表2可知,全球與臺灣再生能源總發電量皆持續攀升,而生質能源方面,2000年全球生質能源發電量為164 TWh(兆瓦時),至2014年發電量增加為493 TWh(兆瓦時),平均每年增長率約8.2%,然相較2000年臺灣生質能源發電量為352.4 GWh(百萬度),2014年發電量遞減至242.5 GWh(百萬度),2016年降至193.8 GWh(百萬度),以發電占比來看,2000年生質能占再生能源總發電量為0.19%,2016年降低至0.07%,平均每年以-2.3%遞減率下降;雖然在發電項目類別中,全球生質能源亦包含部分廢棄物能,臺灣是將其分開計算,但檢視臺灣廢棄物能發電趨勢可知,2000年廢棄物能占再生能源發電量約0.79%,2005年增加至

表2 全球與臺灣再生能源發電量表

		2000	2005	2010	2014	2016
總計	全球(TWh)	2,950	3,409	4,342	5,469	
	臺灣(GWh)	6,380.7	7,260.7	8,554.3	9,816.9	12,602.7
	發電占比(%)	3.45	3.19	3.46	3.78	4.77
	全球(TWh)	164	223	367	493	
生質能源	臺灣(GWh)	352.4	329.2	272.1	242.5	193.8
	發電占比(%)	0.19	0.14	0.11	0.09	0.07
	全球(TWh)	2,700	3,019	3,531	3,983	
水力發電	臺灣(GWh)	4,560	3,986.2	4,194.1	4,317.9	6,562
	發電占比(%)	2.47	1.75	1.7	1.66	2.48
	全球(TWh)	31	104	341	717	
風力發電	臺灣(GWh)	1.4	91	1,026	1,500	1,457
	發電占比(%)	0	0.04	0.42	0.58	0.55
	全球(TWh)	1.03	4.04	32.4	190	
太陽光電	臺灣(GWh)	0.1	1.0	25.6	551.7	1,132.2
	發電占比(%)	0	0	0.01	0.21	0.43
廢棄物能 發電	臺灣(GWh)	1,466.8	2,853	3,036	3,204.3	3,257.6
	發電占比(%)	0.79	1.25	1.23	1.23	1.23
太陽熱能	全球(TWh)	0.53	0.6	1.65	8.49	
潮汐能等	全球(TWh)	0.55	0.52	0.51	1	
地熱能	全球(TWh)	52	58.3	68.1	77.4	

註:TWh=兆瓦時=10億度;GWh=10億瓦時=百萬度

1.25%,2010~2016年再降低為1.23%,顯見, 生質能及廢棄物能皆非我國近年來積極推動 的再生能源產業,發電占比不增反減,有別於 全球利用生質能源發電係呈持續增長之趨勢。

林木資源提供全球生質能源發電占比 最大

承上所述,2014年全球生質能源總發電量 為493 TWh(兆瓦時),產製原料大多取自固體 生質物為主,包含木屑、木質顆粒、農林業廢棄物等,發電量達313 TWh(兆瓦時),占生質能源總發電量約64%,其次依序為沼氣發電80 TWh(兆瓦時)約16%、都市廢棄物及工業廢棄物發電量93.5 TWh(兆瓦時)約19%;液態生物燃料發電量6.3 TWh(兆瓦時)約1%,顯見,林木資源係生質能源的重要原料之一(詳見圖2)。

對此,參照2017年世界生質能源協會統 計數據可知,全球生質能源原料來源超過87%

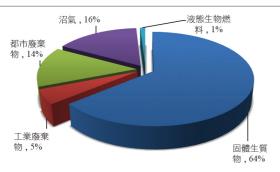


圖2 2014年全球生能源發電產能結構。

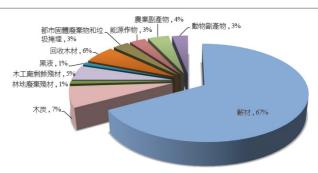


圖3 全球生質能源原料來源。

以上皆取自林產物,如薪材、木炭、林地及 木工廠剩餘殘材等,農業部門如能源作物、 農業副產品及動物副產物等約10%,其餘為都 市固體廢棄物和垃圾掩埋共計3%(詳見圖3)。

然臺灣生質能及廢棄物能發電原料包括 蔗渣、黑液、沼氣、垃圾及廢輪胎等,李灝 銘等(2013)我國生質能發電係以都市垃圾焚 化廠為主,但發電效率平均偏低,短期內欲 提升其發電量實屬不易。相較於全球生質能 源產製原料多取自林木殘材,不僅排碳量較 低,料源供應也相對穩定且產能擴增性大。

林木殘材不浪費,是生質能源重要原料

全球生質能源最大供應料源係取自林木

資源,特別是在歐洲國家廣泛地利用林木剩餘殘材作為燃料。透過表3可知,推估全球林地廢棄殘材、木工廠加工處理殘材等,全球約有超過7.7億噸的林木廢棄物,其產能約介於5.78~8.81 EJ(百萬兆焦耳),且據推算該項數據尚有低估10~15%之可能性,而林地廢棄殘材約3.7億噸,占總林木廢棄物48%。

依據2016年林務局統計年報得知,我國森林覆蓋率為60.7%,近全球平均值30.3%的兩倍,在亞洲地區排名第7名,世界排名第33名;每公頃蓄積量228立方公尺,世界排名第19名,再加上,我國常受豪雨及颱風之侵襲,每年皆有漂流木堆置需處理,2010~2015年間之年平均漂流木數量約為2.4萬噸,足以

表3 全球林木殘材潛在產能

單位: EJ(百萬兆焦耳)

	廢棄物(百萬噸)	最低潛在產能(EJ)	最高潛在產能(EJ)
林地廢棄殘材	371	0.89	2.94
加工剩餘一實木	70.2	0.32	1.11
加工剩餘一木屑粉	37.3	0.09	0.29
加工剩餘一黑液	298	4.48	4.48
合計	777	5.78	8.81

資料來源:世界生質能源協會(2017)

表4全球木質顆粒生產量及進出口量

單位:百萬噸

	全球	非洲	美洲	亞洲	歐洲	大洋洲
2012	19.7	0.09	6.72	0.3	12.5	0.03
2013	22.3	0.04	7.64	0.62	14	0.03
2014	26	0.04	8.97	1.5	15.4	0.14
2015	28	0.03	9.44	1.99	16.3	0.15
2015	進口量	0	0.24	1.75	13.6	0
	出口量	0.02	6.24	1.34	8.56	0

資料來源:世界生質能源協會(2017)

說明我國林木資源極其豐富,可再生作為生 質能源之潛力高。

木質顆粒是未來生質能源發展重要選項

木質顆粒為生質能源固態燃料,主要由 林木剩餘廢棄殘材作為料源,亦可自農業副 產品,如稻草等壓製而成。承上述,全球林 木資源在產能及產量方面,係屬長期有利發 展再生燃料的重要生質能源,木質顆粒便為 其中一種;目前國外廣泛用於住宅供熱、鍋 爐蒸氣及產製電力等民生需求,2015年全球 木質顆粒生產量已達2,800萬噸,其中歐洲是 目前木質顆粒產量最高的國家,占總產量約 59%,其次為美洲約34%,多產於美國東南 部,亞洲約7%。

木質顆粒市場貿易方面,韓國及日本 等東南亞國家為配合其國內再生能源政策推 動,降低排碳量,大幅利用木質顆粒燃燒發 電,使其進出口貿易量逐年高升,現今韓國 已成為除歐盟外,最大木質顆粒進口國, 其次是日本,而美國則為木質顆粒主要出口 國,2015年出口量達458萬噸。

結語

近年來,為適應全球氣候變遷,透過造 林及森林成長過程中之有效率的永續經營, 藉其增加森林碳匯以降低大氣中碳含量,固 然是森林產業當前目標之一。然透過全球能 源趨勢發現,生質能源消費數量及產電需求 逐年增長,特別是蒐取林地廢棄殘材作為燃 料,更是近年來綠色能源之主流。是故,林 木資源不僅具備固碳作用,亦可利用殘材轉 能,發揮多元化高價值之功效。臺灣於2017 年通過電業法修正案,開放用戶購電選擇 權,用戶得自由選擇綠電或傳統電能,並明 定2025年達成非核家園。我國欲提升能源供 應效率,應效仿全球生質能源發展腳步,讓 木質燃料替補部分化石能源,共同承擔與落 實低碳環境之義務。