白血病的救星一粗榧屬植物

⊙文、圖/林業試驗所育林組·張淑華 (shchang@tfri.gov.tw)、何政坤、蔡錦瑩

粗椰屬植物的分布與分類

粗榧屬(Cephalotaxus)為裸子植物三尖杉 科(Cephalotaxaceae)的一屬,又名三尖杉屬, 為三尖杉科僅有的一個屬。出現於中生代白 堊紀至中新世之化石植物,主要分布於東南 亞南部、中南半島北部,即印度東部、緬甸 北部、泰國北部、越南北部、中國秦嶺至山 東魯山以南、朝鮮半島南部、日本及臺灣, 海拔200至3,700公尺的地區,一般生長在山谷 溪邊及潮濕林、山谷雜木林等等。為常綠喬 木或灌木,小枝基部有宿存芽鱗,葉線狀披 針形,對生或近對生,側枝的葉排成兩列, 葉上表面中葉脈凸起,下表面中脈兩側各有 一寬白色氣孔帶。大部分為雌雄異株只有少 數為雌雄同株,雄球花6~11個聚生成頭狀花 序, 腋生, 基部有苞片; 雌球花成頭狀, 大 孢子葉對生,生於小枝基部或近頂的苞腋, 每個苞片腋部著生2個胚珠。種子翌年成熟, 核果狀,由株托發育的由肉質假種皮包圍。

粗榧屬共有8個種3變種,即三尖杉(C. fortune)、粗榧(C. sinensis)、臺灣粗榧(C. silsoniana)、日本粗榧(C. harringtonia)、篦子三尖杉(C. oliveri)、貢山三尖杉(C. lanceolata)、西雙版納粗榧(C. mannii)、海南粗榧(C. haianensis)、寬葉粗榧(C. sinensis var. latifolia)、綠背三尖杉(C. furtunei var. concolor)、與高山三尖杉(C. furtunei var. alpine)。其中粗榧、寬葉粗榧、三尖杉、高山三尖杉及綠背三尖杉為中國特有,而臺灣粗榧為臺灣特有種。

臺灣粗榧又名臺灣三尖杉、威氏粗榧(圖

1)。分布於在臺灣中低海拔600至2,800 m山區的針闊葉混合林或針葉林中,以玉山前山、大霸尖山、合歡山及能高山等地為多,樹高可達十公尺,生長緩慢,樹皮光滑,枝條下垂,小枝對生,頂芽常三枚並列,為常綠喬木,雄雌異株,3月開花,隔年9~11月果實成熟,成熟時假種皮呈紫色。其材質堅韌、紋裡細緻,可用做為建築、家具、農具及工藝等用材,種子可榨油供工業用途,樹型優美為庭園綠化樹種。近年來因棲地破壞、盜伐、濫採、園藝栽培與藥用等,數量銳減,亟需保護。

粗榧屬植物含有之化學成分與用途

粗榧屬植物的根、莖、葉、果、種子都含有可用的化學物質,傳統用作消積、潤肺、及治療腫瘤。最早於1954年發現含有生物鹼與萜類化合物,1958年報導含多種黃酮類化合物,油脂與鞣質。隨後許多學者投入研究,發現此屬植物含有許多重要可以用於醫藥的化合物(表1)。

圖1臺灣粗榧與種子。

表1 粗榧屬植物含有重要可用於醫藥之化合物

	化合物	植物	種類
1	acetylcephalotaxine	臺灣粗榧、海南粗榧、三尖杉	生物鹼
2	anhydroharringtonine	日本粗榧、三尖杉	生物鹼
3	cephalofortuneine	三尖杉	生物鹼
4	cephalotaxinamide	海南粗榧	生物鹼
5	cephalotaxine	臺灣粗榧、日本粗榧、海南粗榧、三尖杉	生物鹼
6	cephalotaxinone	日本粗榧、海南粗榧	生物鹼
7	demethylcephalotaxine	三尖杉	生物鹼
8	demethylcephalotaxinone	三尖杉	生物鹼
9	deoxyharringtonic acid	海南粗榧	生物鹼
10	deoxyharringtonine	日本粗榧	生物鹼
11	drupacine	三尖杉	生物鹼
12	epi-cephalotaxine	三尖杉	生物鹼
13	epi-deoxyharringtonine	三尖杉	生物鹼
14	epi-harringtonine	三尖杉	生物鹼
15	epi-Neohattingtonine	三尖杉	生物鹼
16	2-epicephalofortuneine	三尖杉	生物鹼
17	3-epi-anhydroharringtonine	日本粗榧、三尖杉	生物鹼
18	3-epi-schelhammericine	三尖杉	生物鹼
19	3-epi-schelhammericine B	臺灣粗榧、三尖杉	生物鹼
20	3-epi-wilsonine	臺灣粗榧、日本粗榧、三尖杉	生物鹼
21	4-hydroxycephalotaxine	三尖杉	生物鹼
22	C-3-epi-wilsonione	臺灣粗榧	生物鹼
23	fortuneine	三尖杉	生物鹼
24	harringtonine	日本粗榧、三尖杉	生物鹼
25	homoharringtonine	日本粗榧、三尖杉	生物鹼
26	11-hydroxycephalotaxine	三尖杉、	生物鹼
27	Isocephalotaxine	臺灣粗榧、日本粗榧、海南粗榧、三尖杉	生物鹼
28	isocephalotaxinone	三尖杉	生物鹼
29	isoharringtonic acid	海南粗榧	生物鹼
30	isoharringtonine	臺灣粗榧、日本粗榧、三尖杉	生物鹼
31	neoharringtonine	日本粗榧、三尖杉	生物鹼
32	schelhammericine	臺灣粗榧、日本粗榧	生物鹼
33	wilsonine	臺灣粗榧、三尖杉	生物鹼
34	hainanolide	海南粗榧、三尖杉	酯類
35	hainaolidol	海南粗榧、三尖杉	酯醇
36	apigenin	臺灣粗榧	雙黃酮類
37	kayaflavone	臺灣粗榧	雙黃酮類
38	taiwanhomoflavone A	臺灣粗榧	雙黃酮類
39	taiwanhomoflavone B	臺灣粗榧	雙黃酮類
40	3-[3-3(isopropylamino)-2-hydroxypropoxy]xanthone	臺灣粗榧	雙黃酮類

在粗榧屬植物含有的有用化合物中, 以生物鹼最多也最重要,目前已經分離出超 過30種的生物鹼,最早被發現的是粗榧鹼 (cephalotaxine ,簡稱CET),於1963年由日本 粗榧與三尖杉分離出來。之後陸續發現高三 尖杉酯鹼(homoharringtonine ,簡稱HHT)、 異三尖杉酯鹼(isoharringtonine)與三尖杉酯鹼 (harringtonine ,簡稱HA)等。在1975年時證實 可有效的治療白血病,其作用機制是通過抑 制蛋白質的合成,使多核蛋白體分解,可明 顯減少癌細胞的有絲分裂,對多種動物腫瘤 有抑制作用。

目前對白血病的治療主要採取三尖杉酯 鹼和高三尖杉酯鹼(兩者合稱雙酯鹼)為主的 聯合治療方案,經多年臨床使用證明療效顯 著。因此對「雙酯鹼」的需求也一直增加。在 2006年時ChemGenex Pharmaceuticals Limited 公司以HHT製藥,商品名為Ceflatonin獲得美 國FDA核准為癌症用藥,主用以治療急性非 淋巴細胞性白血病和慢性粒細胞細白血病, 除此HHT還可用於治療黑色素瘤、肺癌、乳 腺癌和腦腫癌,可抑制視網膜色素上皮細胞 增生,有望成為治療視網膜病變的新藥。

最近於2016年10月香港大學研究團隊發表HHT對於治療FLT3-ITD急性骨髓性白血病有顯著成效。FLT3(FLT3-ITD)基因突變出現於30%的急性髓性白血病中,導致癌細胞過度活躍並出現抗藥性,傳統化療效果不理想,死亡率高達90%。香港大學以24名難以治療的骨髓性白血病患者作為受試者,在經HHT與FLT3 抑制劑聯合治療後,83.8 % 獲得緩解,使病人的壽命得以延長,而且副作用少,為血癌病患帶來一線曙光。

圖2臺灣粗榧扦插育苗。

目前HHT和HA已被列入全世界36種重要 抗癌藥物之列,估計光美國白血病患的治療 費用即有13億美元以上,2008年在國際市場上 HHT每公斤售價24萬美元,其市場潛力極大。

粗榧屬植物生物鹼的含量與變化

一般粗榧屬植物的生物鹼含量在0.002 ~0.39%間,生物鹼主要分為二大類,即粗榧鹼 類生物鹼與高刺桐類生物鹼。粗榧鹼類的粗 榧鹼含量最高,佔總生物鹼的40~80%,而高 刺桐類的三尖杉酯鹼在植物體的含量甚低,一 般僅佔乾重的 0.01%。 粗榧屬的生物鹼種類與 含量主要與品種、植物體的組織與器官、及季 節的變化有關。胡玉熹在1999年比較三尖杉、 粗榧、海南粗榧、日本粗榧、子三尖杉、與臺 灣粗榧等6種粗榧屬植物的生物鹼,結果以三 尖杉的生物鹼類種類最多,其次為日本粗榧、 最少的為臺灣粗榧。6種粗榧都含有CET,除 了臺灣粗榧外,其他5種都含有HHT與HA。臺 灣粗榧在許多分類學者的鑑定中都認為是粗 榧的變種,理應有此類相同的成分,但早期的 調查都並未指出有相關的生物鹼類,推測原因 可能是取樣的株數過少。林試所於全臺東北、 北、中南共19個地區蒐集185株臺灣粗榧的枝 葉調查HHT與HA的含量,發現這些母樹6.5% 含有HA,21.6%含有HHT,各地區與單株間

圖4臺灣粗榧胚培養。左:胚發芽;右:胚發育成體胚,體胚再發芽成苗。

的含量差異很大,含量最高單株的HHT可達 0.563%;而HA可達0.248%。顯示臺灣粗榧的 HHT與HA的變異頗大,具有選育的潛力。

以安徽、江西、四川、貴州、雲南六地區的三尖杉,調查不同分布地區與植物體部位的雙酯鹼(HA與HHT)含量變化,結果二種生物鹼都以根部最高(0.013~0.03%),其次是葉片(0.012~0.024%)。依地區來看,根部雙酯鹼含量最高的來自貴州(0.03%),最低為四川與江西(0.021%);葉部雙酯鹼(0.024%)最高來自江西,最低為雲南(0.012%)。

另比較江蘇粗榧與安徽的三尖杉一年不同季節的雙酯鹼含量變化,結果HA以三尖杉含量較高,而HHT含量則在兩樹種差不多。不同月份雙酯鹼含量會有變化,如三尖杉的小枝葉在7月的雙酯鹼含量(0.032%)最高,11月(0.010%)最低兩者相差2倍多;粗榧的雙酯鹼含量也會隨季節變化,在7月(0.0296%)最高,3月(0.0108%)最低。

粗榧屬植物生物鹼的生產途徑

粗榧屬植物具有如此高的經濟價值,但其自然資源貧乏,生長緩慢,生物鹼含量低,需100~150 Kg的三尖杉枝葉才可提煉1 g高三尖杉酯鹼。因此為解決此一問題,近來科學家投入許多研究希望增加產量,包括選拔高含量品系利用無性繁殖育苗,建立生產

區利用枝葉採收;利用組織培養來培育高含量生物鹼苗木、培養未轉殖根、癒合組織、細胞培養、與轉基因的毛狀根及化學全合成 與半合成等等方式來生產生物鹼。

1. 優良品系選拔、無性繁殖與生物鹼生產: 在不同粗榧屬植物的單株、組織、部位, 其生物鹼的種類與濃度會不同,選拔與培 育高含量單株來生產生物鹼將可提高產 量。我們首先於全臺蒐集臺灣粗榧的枝 葉,調查三種主要生物鹼CET, HHT, HA的 含量,選拔出具有高含量的CET, HHT或 HA的母樹枝葉,進行扦插繁殖大量育苗 (圖2),不同地區採集的臺灣粗榧的發根率 會有差異,最高為武陵的81%,最低為溪 頭的17.3%,其餘地區在33~59%。發根之 扦插苗,選擇適合臺灣粗榧生長的地區, 建立採穗園(圖3),每年進行採穗園的除 草、撫育,以採集枝葉來生產抗癌藥物。

2. 微體繁殖與胚培養:

試管苗繁殖用於木本植物優良基因保存與 大量繁殖已證實具有經濟價值。經選擇高 量生物鹼之母樹芽體或細胞系進行組織培 養,將可提高苗木生物鹼產量。目前已成 功用於繁殖粗榧苗木,如中日學者以微體 繁殖及胚培養的體胚再生培育日本粗榧、 以未成熟胚培養培育三尖杉種子苗。林試

圖5臺灣粗榧試管大量繁殖。

所組培室也建立臺灣粗榧、三尖杉的體胚 再生(圖4)、微體繁殖(圖5)等方法來繁殖優 良品系小苗。同時由於臺灣粗榧側枝扦插 繁殖的苗木都具有傾斜生長的惰性,導致 苗木無法直立生長,且成長速度緩慢;微 體繁殖技術除可用以繁殖優良老樹的小苗 外,在試管內的莖芽,經過重複培養過程, 會有返幼年化現象,可恢復直立性生長。

3. 癒合組織、根培養與細胞懸浮培養:

主要研究集中在日本粗榧與三尖杉。如1997年就有研究報導日本粗榧癒合組織可生產生物鹼,但產量只有原來母樹的1~3%。在1995年調查日本粗榧組織培養根產生的生物鹼高於癒合組織,其根可生產2.4 mg/kg HHT,3.9 mg/kg HA與10.2 mg/kg CET。目前包括我們對臺灣粗榧的研究,粗榧屬的癒合組織、懸浮細胞、根等培養生產的HHT,HA,CET都低於來源母樹。

4. 毛狀根培養:

以癒合組織、根或細胞培養生產生物鹼,在培養過程中都需要添加植物生長調節劑,有許多研究發現,植物生長激素會抑制生物鹼的積聚,且容易導致DNA突變,影響細胞長期培養生產二次代謝物的穩定性。利用農桿叢根菌(Agrobacterium A. rhizogenes)轉殖Ri質體進入植物基因體

圖6臺灣粗榧毛狀根。

中,可使植物體不需要外加植物生長調 節劑,即可自行分裂生長,產生毛狀根 (hairy roots),可保留原植物體生產二次代 謝物能力,減少基因突變,維持細胞生產 二次代謝物的穩定性,此方法已經用於許 多植物二次代謝物的生產。林試所組培室 已建立臺灣紅豆杉、喜樹與青脆枝的毛狀 根,並以生物反應器放大培養,證實可穩 定生產植物二次代謝物。

在臺灣粗榧,我們以葉片與莖段接種野生型農桿叢根菌AR1600,1601,15834可獲得毛狀根(圖6)。此毛狀根可在不含植物生長調節劑的培養基中生長且可生產HHT與CET,極具發展潛力,目前正進行生物反應器培養,測試大量培養與生產生物鹼之可行性。

5. 化學合成:

目前醫藥原料的的HHT來源主要直接萃取自粗榧屬植物,部分來自經由CET半合成製成HHT。CET在植物體的含量較高,其價格僅為HHT的1/20,因此利用其提供作為HHT經濟合成來源。除此亦有許多學者研究CET與HHT等的全合成,希望解決HHT資源稀少的問題。