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Research paper

Detection of Induced Damage in Medium-Density
Fiberboard Panels Using a Neural Network Method

Way Long,”” Robert W. Rice”
[ Summary ]

This research assessed the feasibility of using a neural network to detect induced and interior
damage to small samples of medium-density fiberboard (MDF). The neural network was a 3-layer
back-propagation network. The undamaged stress wave frequency spectrum patterns were used to
train the neural network. In a previous study, we successfully used the trained patterns to evalu-
ate low levels of damage in samples of MDF onto which various percentages of their estimated
failure loads were applied. In this experiment, after introduction of grooves on the surface or a
hole through the center of the samples, a small change in the wave patterns occurred. The neural
network has the unique ability to train itself using data to recognize spectral patterns and was suc-
cessfully used to detect structural damage.
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INTRODUCTION

Many researchers have investigated non-
destructive testing (NDT) to evaluate the me-
chanical properties of wood and wood-based
composite materials. The most common
methods assess the relationship between me-
chanical properties and a stress wave velocity
using a regression analysis (Ross and Pellerin
1991). However, these methods have limited
use in composite board manufacturing plants
because regression analysis does not adapt
well to the changing environment of manu-
facturing plants. Regression analysis also
requires specification of a functional model
and evaluation of the statistical significance
of the model’s parameters with new data. An
effective, reliable, nondestructive, damage
assessment methodology would be a valuable
tool for evaluating wood-based composites
that have undergone or are undergoing stress.

A number of researchers have utilized

stress wave propagation as a nondestruc-
tive testing tool for wood and wood-based
composites (Shaler 1982, Ross 1984). Stress
wave propagation in wood and wood-based
composites depends on the (1) density, (2)
moisture content, (3) geometry, (4) boundary
conditions, and (5) impact forces. A stress
wave induced by an impactor hitting a speci-
men that is composed of an isotropic, homo-
geneous, and elastic material is represented in
Fig. 1.

The observed wave behavior can be
modeled using a 1-dimensional stress wave
equation as follows:

2 2
e g
where u is the longitudinal particle displace-
ment of a cross-section of the bar at x and C
is the speed of the wave propagating in the
bar.
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Fig. 1. Propagation of a stress wave in a bar.

The relationship between the dynamic

modulus of elasticity (£,) and stress wave ve-
locity (C) is given by,
E,=Cplg )
where C is the speed as the wave propagates
in the bar, p is the density, g is the accelera-
tion due to gravity.

Many investigators have developed
neural networks (Lippmann 1987). Neural
networks have the unique ability to be trained
to recognize spectral patterns and have been
used with success to detect structural damage
(Wu et al. 1992, Shin and Park 2000). Wu et
al. (1992) and Elkordy et al. (1993) used a
neural network for damage diagnosis in com-
posite materials. The back-propagation net-
work is one of the most successful recurrent
network paradigms in use today (Huang and
Zhang 1994, Tarng et al. 1994). Our previous
study successfully used a back-propagation
neural network to evaluate low levels of dam-
age in samples of medium-density fiberboard
(MDF) (Long and Rice 2008). Following a
feasibility study, the trained network was uti-
lized to discriminate damaged samples from
an artificially created groove or hole through
its cross-section. The measurement error be-
tween the damaged and undamaged samples

v

was assessed to determine the effects of the
applied damage types.

The basic hypothesis for this research
was that no damage should exist in samples.
As such, the neural network could be trained
based on patterns of samples having no load
history. Furthermore, samples had no visual
or mechanical damage. The “measurement
error” used to test the basic hypothesis was
defined as follows:

=) ST 1) G
where ¢ is the measurement error, 7 is the de-
sired output, and Y is the actual output.

The purpose of this study was to deter-
mine the feasibility of using neural networks
to detect intentionally induced damage in
small samples of MDF. The specific objec-
tives were as follows:

1. To establish a reference pattern obtained
when no load history (undamaged) MDF
samples were used to train a neural net-
work; and

2.To compare variations obtained when a
neural network pattern developed from un-
damaged MDF samples was compared to
the frequency spectra of stress waves taken
from “damaged” samples to which artificial
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damage as a groove or a hole through its
cross-section had been applied.

MATERIALS AND METHODS

Preparation of MDF specimens

The primary experiments consisted of
preparing 20 samples of 2 thicknesses of 1.25
and 1.9 cm (1/2 and 3/4 inch) of MDF (Geor-
gia-Pacific, Old Town, ME, USA). There was
no apparent visual damage to any samples.
Samples were cut parallel to the machine di-
rection that was according to the sandmarks
and were cut into samples measuring 7.6 cm
wide by 22.9 cm long. After the samples were
cut, they were conditioned at 21°C and 65%
relative humidity (5.1% equilibrium moisture
content, EMC).

A schematic of the experimental setup
and measuring instrumentation is shown in
Fig. 2. The impact damper system and receiv-
ing transducer were connected to an ampli-
fier (Briiel and Kjer type 2635, Denmark),
dynamic signal analyzer (HP 35665A, USA),
and a microcomputer. The system consisted
of an impact device for generating stress

waves, a transducer, and a charge ampli-
fier which captured and analyzed the stress
waves. Fast Fourier transformation (FFT) was
used to capture a pulse and compute the fre-
quency spectrum. The information was then
transferred to a microcomputer for analysis.
The data were collected for a frequency range
of 0~6.4 kHz using 800 lines of resolution
in the frequency domain corresponding to 8
Hz of frequency resolution. The transferred
signal dataset was then processed for neural
network training and testing.

The basic experimental method consisted
of 3 steps. First, frequency spectra were cal-
culated from stress waves which had passed
through samples of undamaged MDF (Fig.
3). Second, the frequency spectra of waves
from the undamaged MDF were used to train
a feed-forward back-propagation neural net-
work to recognize a “good” spectral pattern.
Third, the difference or “error” derived from a
comparison of the neural network pattern and
frequency spectra taken from samples with 2
types of damage were statistically compared
to determine if the differences could be re-
lated to the damage types.

HP35665 A dynamic
signal analyzer
Amplifier >
n out

Impactor

MDF specimen
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Accelerometer /|

1L

Microcomputer

Fig. 2. Schematic of the stress wave-measuring system.
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Fig. 3. Frequency spectra calculated from
stress waves passing through samples of
undamaged medium-density fiberboard
(0~6 kHz).

Effect of induced and interior damage

Ten samples were prepared for each
thickness of MDF (7.6 by 22.9 by 1.25/1.9
cm thick). The stress wave and frequency
spectra were determined in undamaged
samples before cutting the grooves or drilling
a hole. Two grooves measuring 0.16 cm deep
were cut into 5 specimens at the center on the
surface of both sides to reduce their cross-
section and affect wave propagation (Fig. 4).
Five additional specimens were prepared by
drilling a hole, 0.95 cm in diameter, through
the center (Fig. 5).

After training, the frequency spectra
from the damaged samples were compared to
the trained neural network pattern. The data
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Fig. 4. Sample with a reduced cross-
section caused by grooving.
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_’l |‘_ Wave
7.6 cm propagation
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Fig. 5. Sample with a hole through its
cross-section.
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were used to see how well the trained net-
work could discern and discriminate samples
before and after damage.

A previous study (Long and Rice 2008)
successfully built a knowledge base with
the neural network by: (1) collecting the fre-
quency spectra of the stress wave patterns for
training and testing; (2) training the neural
network with the an array containing a large
number of the undamaged frequency spectra;
(3) verifying the trained network by com-
paring a single wave taken from each of 20
undamaged samples with the trained neural
network pattern; and (4) determining the dif-
ference or “error” between the undamaged
neural network pattern and frequency spectra
from damaged samples.

The back-propagation learning algorithm
was used to train the neural network and es-
tablish the interconnection weights (Fig. 6).
Weights of the network that are generally ran-
domly set were initialized to begin the train-
ing. The neural network was trained using the
frequency spectra of undamaged samples. Af-
ter the training process, the frequency spectra
from damaged specimens were compared to
the trained neural network pattern. These data
were used to see how well the learned neural
network could discern and discriminate be-
tween damaged and undamaged samples.

Sensitive vibration measurements are
subject to variation from a number of sources.
Therefore, it is important to recognize and
eliminate extreme values that are not valid
representations of the material/material
analysis system. A 95% level of statistical
significance was selected to define which fac-
tors had an effect on the dependent variables.
Therefore, differences of damaged types were
termed significant if a significant difference
(p value < 0.05) was found. An analysis of
variance (ANOVA) was conducted to com-
pare the measurement error of the 2 types of
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Fig. 6. Schematic diagram of a 3-layer feed-forward back-propagation neural network.

damage. Two-way ANOVA, general linear
model (GLM), and multiple contrast tests
were used to analyze the results. The pro-
cedure was used to analyze the variance to
evaluate possible differences and interactions
between each property of the damage types,
sample variance, and replicates.

RESULTS AND DISCUSSION

The back-propagation neural network for
determining undamaged and damaged levels
of MDF was trained to utilize the undamaged
stress wave patterns from each thickness of
specimens. A training dataset consisting of 20
undamaged stress wave patterns of the pro-
cess operating conditions was constructed for
each thickness of MDF. Damage was detected
by the neural network and compared to the
learned wave pattern; this was used to indi-
cate damage to the MDF.

The major objectives considered here
were the detection accuracy and how the
sensitivity of the detection varied with stress
wave patterns due to the damage types. A
training process presents the network with
undamaged wave patterns and self-organizes

so that it correctly recognizes the undamaged
wave pattern. When trained successfully, dif-
ferences were not very obvious between un-
damaged wave patterns. This means that dif-
ferences between undamaged wave patterns
were smaller than those of damaged wave
patterns. In an ecarlier study, we were success-
ful in using the neural network to diagnose
the extent of individual damage from the
frequency spectrum of a damaged structure
(Long and Rice 2008). These observations are
currently being used to investigate structural
damage detection.

Velocity of stress wave transmission

How long a stress wave propagated in
the MDF specimen was computed by equa-
tion (4):

20

o= @

where A is the length of the specimen (cm)
and ¢ is the time of a period of stress wave (s).
The results of the time of the stress wave pe-
riod was computed for 1.25- and 1.9-cm (1/2-
and 3/4-in.)-thick MDF. Using ANOVA and
Tukey’s studentized range (HSD) tests, aver-
age times of specimens of the same thickness
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showed no significant differences. This means
that the average stress wave period was rela-
tively consistent regardless of the number
of specimens measured. There was also no
significant difference between the 1.25- and
1.9-cm-thick specimens (Table 1).
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Effect of induced and interior damage
Figure 7 shows the stress waves and
their associated frequency spectra after cut-
ting a groove in 2 surfaces of a sample. The
magnitude of the dominant frequency from
the grooved samples was lower than that of

Table 1. Analysis of speed variations among 2 thicknesses of medium-density fiberboard

samples (cm s™)"

Thickness (cm) Number Mean Std. deviation Tukey grouping
1.25 10 125005.6 872.9 A
1.9 10 124688.1 4453 A

Mean, average speed of the stress wave (cm s™).

F value = 1.62, p = 0.24 > 0.05, ANOVA not significant.
Means with the same letter do not significantly differ.

2
elocity (C) of the stress wave (cm s™), C =—— (4), where X is the length of the specimen (cm) an
Y Velocity (C) of th ( h, C t(4) here X is the length of th i (cm) and

t is the period of stress wave (s).
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Fig. 7. (a) Typical stress waves and (b) associated frequency spectra before (undamaged)
and after cutting surface grooves (damaged with a groove) (1.25-cm-thick sample).
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samples without the groove. This means that
there was some energy loss when the stress
wave passed around the groove. There was a
relationship between the groove and the mag-
nitude of the amplitude at the maximum peak.

The neural network was trained using
undamaged samples and the pattern learned
was compared to the frequency spectra from
the grooved samples. The results are shown
in Fig. 8 and Table 2.
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4.301
4.201
4.101
4.001
3.90-

Measurement erroe (x10™)

4207 (b)
4.151
4.101
4.051
4.001
3.951
3.904

Measurement erroe (x107)

1 2 3 4 5
Sample no.

W Undamage M Damage with a groove
Fig. 8. Average measurement errors of
undamaged neural network patterns of
various samples damaged with a groove of
(a) 1.25- and (b) 1.9-cm-thick samples.

It is evident from the measurement error
of specimens with the groove that the error
significantly increased. In most cases, the
observed differences were related to a drop
in the magnitude of the peak. The drop was
probably due to the energy loss of the stress
wave as a result of the groove.

Figures 9 and 10 represent the stress
waves and their frequency spectra before and
after drilling a hole in the MDF samples. For
1.25-cm-thick specimens, Fig. 9 shows that
the amplitude of the frequency spectrum for
samples with the hole was larger than that
of samples without the hole. This indicates
that there was less energy loss than when the
stress wave passed through a sample with a
hole, because the wave was forced to concen-
trate and pass through the surface layers that
have higher density than the middle layer. In
addition, the hole/thickness ratio is also im-
portant in wave energy transfer.

For 1.9-cm-thick samples, Fig. 10 shows
the amplitude of the frequency spectrum for a
typical sample with a hole through its center.
A slight decrease was expected because of the
energy loss of the stress wave due to the hole.
However, the 1.9-cm-thick samples were less
affected than were the 1.25-cm-thick samples
because less of the section surface material
was removed.

Figure 11 shows the measurement error
obtained when the neural network pattern

Table 2. Analysis of measurement errors before and after cutting a groove in medium-

density fiberboard samples

Thickness Number Mean S}dz Tuke'y
A% u
(cm) deviation grouping
1.25 Before cutting the groove 4.06%107 1.24X10° A
p=10E-4  After cutting the groove 421X10° 228X 10° B
1.9 Before cutting the groove 3.98X10°  3.44x107 A
p=10E-4  After cutting the groove 4.09%10° 6.85%x107 B
Alpha=0.05.

Means with the same letter do not significantly differ.
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(1.25-cm-thick sample). (1.9-cm-thick sample).

B Undamaged W After drilling a hole

T 4707 (a) T 4157 ()
= >
E Z 4104
5 4501 8
5 5 4.051
= 4301 =
2 g 4007
[
E 4.10 é‘ 3954
g g
< 3.90- S 3.901
1 2 3 4 5 1 2 3 4 5

Sample no. Sample no.
Fig. 11. Average measurement errors of undamaged neural network patterns of various
samples damaged with a hole of (a) 1.25- and (b) 1.9-cm-thick sample.

Table 3. Analysis of measurement errors before and after drilling a hole in medium-density
fiberboard samples

Thickness Number Mean S.td.. Tuke.y
(cm) deviation grouping
1.25 Before drilling the hole 25 4.05X10°  2.00%X10° A
p-value =1.0E-4  After drilling the hole 25 4.35%107 1.63X10° B
1.9 Before drilling the hole 25 400X10°  3.95%X10° A
p-value =1.0E-4  After drilling the hole 25 4.04X10° 3.99%x10° B
Alpha=0.05.

Means with the same letter do not significantly differ.

obtained from undamaged samples was com- sample frequency spectra was lower than that
pared to the stress waves from samples with a of samples containing a hole.

hole. Each bar is the average measurement er-

ror from 5 replicates. These results were sta- CONCLUSIONS

tistically compared, and the results are shown

in Table 3. It is evident that the measurement The feasibility of using a neural net-

error of the peak magnitude of undamaged work to detect the structural damage in MDF
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was explored using a feed-forward back-
propagation neural network. The network not
only recognized the undamaged frequency
patterns, but usually indicated the pattern
variation in the frequency spectra as damaged
types.

The neural network was trained to rec-
ognize undamaged samples and those with
grooves in the surface or a hole through the
center of the sample. The results of the ex-
periments are very encouraging. The research
provides the following advantages.

1. The neural network can be trained with a
limited number of frequency spectra.

2. The learned neural network can also detect
changes in the frequency spectra due to
cutting a groove and drilling a hole in the
MDF samples.

The feed-forward back-propagation
neural network is one of the first types of
networks developed and has been the most
widely applied network to date. These obser-
vations are currently being investigated for
detection of damaged structures.
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