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Detection of Induced Damage in Medium-Density
Fiberboard Panels Using a Neural Network Method

Way Long,1,3)     Robert W. Rice2)

【Summary】

This research assessed the feasibility of using a neural network to detect induced and interior 
damage to small samples of medium-density fiberboard (MDF). The neural network was a 3-layer 
back-propagation network. The undamaged stress wave frequency spectrum patterns were used to 
train the neural network. In a previous study, we successfully used the trained patterns to evalu-
ate low levels of damage in samples of MDF onto which various percentages of their estimated 
failure loads were applied. In this experiment, after introduction of grooves on the surface or a 
hole through the center of the samples, a small change in the wave patterns occurred. The neural 
network has the unique ability to train itself using data to recognize spectral patterns and was suc-
cessfully used to detect structural damage. 
Key words: neural network, back-propagation neural network, medium-density fiberboard, stress 

waves.
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研究報告

利用類神經網路辨識中密度纖維板加工後

之非破壞頻譜變化

龍暐1,3) Robert W. Rice2)

摘 要

本研究針對類神經網路使用來偵測中密度纖維板結構低破壞程度之可行性評估。類神經網路是一

種計算系統，它使用大量簡單的相連人工神經元來模仿生物神經網路的學習能力，其中又以由三層網

路所連結之倒傳遞類神經網路(back-propagation neural network)最為被普遍應用在診斷、預測功能上。
先前研究已成功的辨識出中密度纖維板在其彈性限度內受不同載重後，因其結構受力後所導致應力波

頻譜之變化，延續此研究成果利用此頻譜來訓練倒傳遞類神網路，以非破壞應力波量測試中密度纖

維板當受不同人為加工後(如表面開槽、中間層開孔等)的結構破壞程度之頻譜，經過學習之類神經網
路，可以成功地偵測。

關鍵詞：類神經網路、倒傳遞類神經網路、中密度纖維板、應力波。
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INTRODUCTION
Many researchers have investigated non-

destructive testing (NDT) to evaluate the me-
chanical properties of wood and wood-based 
composite materials. The most common 
methods assess the relationship between me-
chanical properties and a stress wave velocity 
using a regression analysis (Ross and Pellerin 
1991). However, these methods have limited 
use in composite board manufacturing plants 
because regression analysis does not adapt 
well to the changing environment of manu-
facturing plants. Regression analysis also 
requires specification of a functional model 
and evaluation of the statistical significance 
of the model’s parameters with new data. An 
effective, reliable, nondestructive, damage 
assessment methodology would be a valuable 
tool for evaluating wood-based composites 
that have undergone or are undergoing stress.

A number of researchers have utilized 

stress wave propagation as a nondestruc-
tive testing tool for wood and wood-based 
composites (Shaler 1982, Ross 1984). Stress 
wave propagation in wood and wood-based 
composites depends on the (1) density, (2) 
moisture content, (3) geometry, (4) boundary 
conditions, and (5) impact forces. A stress 
wave induced by an impactor hitting a speci-
men that is composed of an isotropic, homo-
geneous, and elastic material is represented in 
Fig. 1.

The observed wave behavior can be 
modeled using a 1-dimensional stress wave 
equation as follows:

 = C2 	 (1)

where µ is the longitudinal particle displace-
ment of a cross-section of the bar at x and C 
is the speed of the wave propagating in the 
bar.
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The relationship between the dynamic 
modulus of elasticity (Ed) and stress wave ve-
locity (C) is given by,
Ed = C2ρ/g	 (2)
where C is the speed as the wave propagates 
in the bar, ρ is the density, g is the accelera-
tion due to gravity.

Many investigators have developed 
neural networks (Lippmann 1987). Neural 
networks have the unique ability to be trained 
to recognize spectral patterns and have been 
used with success to detect structural damage 
(Wu et al. 1992, Shin and Park 2000). Wu et 
al. (1992) and Elkordy et al. (1993) used a 
neural network for damage diagnosis in com-
posite materials. The back-propagation net-
work is one of the most successful recurrent 
network paradigms in use today (Huang and 
Zhang 1994, Tarng et al. 1994). Our previous 
study successfully used a back-propagation 
neural network to evaluate low levels of dam-
age in samples of medium-density fiberboard 
(MDF) (Long and Rice 2008). Following a 
feasibility study, the trained network was uti-
lized to discriminate damaged samples from 
an artificially created groove or hole through 
its cross-section. The measurement error be-
tween the damaged and undamaged samples 

was assessed to determine the effects of the 
applied damage types. 

The basic hypothesis for this research 
was that no damage should exist in samples. 
As such, the neural network could be trained 
based on patterns of samples having no load 
history. Furthermore, samples had no visual 
or mechanical damage. The “measurement 
error” used to test the basic hypothesis was 
defined as follows:

ε = ( )  (Tj - Yj)
2	 (3)

where ε is the measurement error, Tj is the de-
sired output, and Yj is the actual output.

The purpose of this study was to deter-
mine the feasibility of using neural networks 
to detect intentionally induced damage in 
small samples of MDF. The specific objec-
tives were as follows:
1.	To establish a reference pattern obtained 

when no load history (undamaged) MDF 
samples were used to train a neural net-
work; and

2.	To compare variations obtained when a 
neural network pattern developed from un-
damaged MDF samples was compared to 
the frequency spectra of stress waves taken 
from “damaged” samples to which artificial 

Fig. 1. Propagation of a stress wave in a bar.
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damage as a groove or a hole through its 
cross-section had been applied.

MATERIALS AND METHODS

Preparation of MDF specimens
The primary experiments consisted of 

preparing 20 samples of 2 thicknesses of 1.25 
and 1.9 cm (1/2 and 3/4 inch) of MDF (Geor-
gia-Pacific, Old Town, ME, USA). There was 
no apparent visual damage to any samples. 
Samples were cut parallel to the machine di-
rection that was according to the sandmarks 
and were cut into samples measuring 7.6 cm 
wide by 22.9 cm long. After the samples were 
cut, they were conditioned at 21℃ and 65% 
relative humidity (5.1% equilibrium moisture 
content, EMC). 

A schematic of the experimental setup 
and measuring instrumentation is shown in 
Fig. 2. The impact damper system and receiv-
ing transducer were connected to an ampli-
fier (Brüel and Kjær type 2635, Denmark), 
dynamic signal analyzer (HP 35665A, USA), 
and a microcomputer. The system consisted 
of an impact device for generating stress 

waves, a transducer, and a charge ampli-
fier which captured and analyzed the stress 
waves. Fast Fourier transformation (FFT) was 
used to capture a pulse and compute the fre-
quency spectrum. The information was then 
transferred to a microcomputer for analysis. 
The data were collected for a frequency range 
of 0~6.4 kHz using 800 lines of resolution 
in the frequency domain corresponding to 8 
Hz of frequency resolution. The transferred 
signal dataset was then processed for neural 
network training and testing.

The basic experimental method consisted 
of 3 steps. First, frequency spectra were cal-
culated from stress waves which had passed 
through samples of undamaged MDF (Fig. 
3). Second, the frequency spectra of waves 
from the undamaged MDF were used to train 
a feed-forward back-propagation neural net-
work to recognize a “good” spectral pattern. 
Third, the difference or “error” derived from a 
comparison of the neural network pattern and 
frequency spectra taken from samples with 2 
types of damage were statistically compared 
to determine if the differences could be re-
lated to the damage types.

Fig. 2. Schematic of the stress wave-measuring system.
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Effect of induced and interior damage
Ten samples were prepared for each 

thickness of MDF (7.6 by 22.9 by 1.25/1.9 
cm thick). The stress wave and frequency 
spectra were determined in undamaged 
samples before cutting the grooves or drilling 
a hole. Two grooves measuring 0.16 cm deep 
were cut into 5 specimens at the center on the 
surface of both sides to reduce their cross-
section and affect wave propagation (Fig. 4). 
Five additional specimens were prepared by 
drilling a hole, 0.95 cm in diameter, through 
the center (Fig. 5).

After training, the frequency spectra 
from the damaged samples were compared to 
the trained neural network pattern. The data 

were used to see how well the trained net-
work could discern and discriminate samples 
before and after damage.

A previous study (Long and Rice 2008) 
successfully built a knowledge base with 
the neural network by: (1) collecting the fre-
quency spectra of the stress wave patterns for 
training and testing; (2) training the neural 
network with the an array containing a large 
number of the undamaged frequency spectra; 
(3) verifying the trained network by com-
paring a single wave taken from each of 20 
undamaged samples with the trained neural 
network pattern; and (4) determining the dif-
ference or “error” between the undamaged 
neural network pattern and frequency spectra 
from damaged samples.

The back-propagation learning algorithm 
was used to train the neural network and es-
tablish the interconnection weights (Fig. 6). 
Weights of the network that are generally ran-
domly set were initialized to begin the train-
ing. The neural network was trained using the 
frequency spectra of undamaged samples. Af-
ter the training process, the frequency spectra 
from damaged specimens were compared to 
the trained neural network pattern. These data 
were used to see how well the learned neural 
network could discern and discriminate be-
tween damaged and undamaged samples. 

Sensitive vibration measurements are 
subject to variation from a number of sources. 
Therefore, it is important to recognize and 
eliminate extreme values that are not valid 
representations of the material/material 
analysis system. A 95% level of statistical 
significance was selected to define which fac-
tors had an effect on the dependent variables. 
Therefore, differences of damaged types were 
termed significant if a significant difference 
(p value < 0.05) was found. An analysis of 
variance (ANOVA) was conducted to com-
pare the measurement error of the 2 types of 

Fig. 4. Sample with a reduced cross-
section caused by grooving.

Fig. 3. Frequency spectra calculated from 
stress waves passing through samples of 
undamaged medium-density fiberboard 
(0~6 kHz).

Fig. 5. Sample with a hole through its 
cross-section.
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damage. Two-way ANOVA, general linear 
model (GLM), and multiple contrast tests 
were used to analyze the results. The pro-
cedure was used to analyze the variance to 
evaluate possible differences and interactions 
between each property of the damage types, 
sample variance, and replicates. 

RESULTS AND DISCUSSION

The back-propagation neural network for 
determining undamaged and damaged levels 
of MDF was trained to utilize the undamaged 
stress wave patterns from each thickness of 
specimens. A training dataset consisting of 20 
undamaged stress wave patterns of the pro-
cess operating conditions was constructed for 
each thickness of MDF. Damage was detected 
by the neural network and compared to the 
learned wave pattern; this was used to indi-
cate damage to the MDF.

The major objectives considered here 
were the detection accuracy and how the 
sensitivity of the detection varied with stress 
wave patterns due to the damage types. A 
training process presents the network with 
undamaged wave patterns and self-organizes 

so that it correctly recognizes the undamaged 
wave pattern. When trained successfully, dif-
ferences were not very obvious between un-
damaged wave patterns. This means that dif-
ferences between undamaged wave patterns 
were smaller than those of damaged wave 
patterns. In an earlier study, we were success-
ful in using the neural network to diagnose 
the extent of individual damage from the 
frequency spectrum of a damaged structure 
(Long and Rice 2008). These observations are 
currently being used to investigate structural 
damage detection.

Velocity of stress wave transmission
How long a stress wave propagated in 

the MDF specimen was computed by equa-
tion (4): 

C = 	 (4)

where λ is the length of the specimen (cm) 
and t is the time of a period of stress wave (s). 
The results of the time of the stress wave pe-
riod was computed for 1.25- and 1.9-cm (1/2- 
and 3/4-in.)-thick MDF. Using ANOVA and 
Tukey’s studentized range (HSD) tests, aver-
age times of specimens of the same thickness 

Fig. 6. Schematic diagram of a 3-layer feed-forward back-propagation neural network.
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showed no significant differences. This means 
that the average stress wave period was rela-
tively consistent regardless of the number 
of specimens measured. There was also no 
significant difference between the 1.25- and 
1.9-cm-thick specimens (Table 1). 

Effect of induced and interior damage
Figure 7 shows the stress waves and 

their associated frequency spectra after cut-
ting a groove in 2 surfaces of a sample. The 
magnitude of the dominant frequency from 
the grooved samples was lower than that of 

Table 1. Analysis of speed variations among 2 thicknesses of medium-density fiberboard 
samples (cm s-1)1)

	Thickness (cm)	 Number	 Mean	 Std. deviation	 Tukey grouping
	 1.25	 10	 125005.6	 872.9	 A
	 1.9	 10	 124688.1	 445.3	 A
Mean, average speed of the stress wave (cm s-1).
F value = 1.62, p = 0.24 > 0.05, ANOVA not significant.
Means with the same letter do not significantly differ.
1) Velocity (C) of the stress wave (cm s-1), C =  (4), where λ is the length of the specimen (cm) and 

t is the period of stress wave (s).

Fig. 7. (a) Typical stress waves and (b) associated frequency spectra before (undamaged) 
and after cutting surface grooves (damaged with a groove) (1.25-cm-thick sample).
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Table 2. Analysis of measurement errors before and after cutting a groove in medium-
density fiberboard samples
	Thickness		  Number	 Mean	 Std.	 Tukey
	 (cm)				    deviation	 grouping
	 1.25 	 Before cutting the groove	 25	 4.06×10-5	 1.24×10-6	 A
	p = 1.0E-4	 After cutting the groove	 25	 4.21×10-5	 2.28×10-6	 B
	 1.9 	 Before cutting the groove	 25	 3.98×10-5	 3.44×10-7	 A
	p = 1.0E-4	 After cutting the groove	 25	 4.09×10-5	 6.85×10-7	 B
Alpha = 0.05.
Means with the same letter do not significantly differ.

Fig. 8. Average measurement errors of 
undamaged neural network patterns of 
various samples damaged with a groove of 
(a) 1.25- and (b) 1.9-cm-thick samples.

samples without the groove. This means that 
there was some energy loss when the stress 
wave passed around the groove. There was a 
relationship between the groove and the mag-
nitude of the amplitude at the maximum peak. 

The neural network was trained using 
undamaged samples and the pattern learned 
was compared to the frequency spectra from 
the grooved samples. The results are shown 
in Fig. 8 and Table 2.

It is evident from the measurement error 
of specimens with the groove that the error 
significantly increased. In most cases, the 
observed differences were related to a drop 
in the magnitude of the peak. The drop was 
probably due to the energy loss of the stress 
wave as a result of the groove.

Figures 9 and 10 represent the stress 
waves and their frequency spectra before and 
after drilling a hole in the MDF samples. For 
1.25-cm-thick specimens, Fig. 9 shows that 
the amplitude of the frequency spectrum for 
samples with the hole was larger than that 
of samples without the hole. This indicates 
that there was less energy loss than when the 
stress wave passed through a sample with a 
hole, because the wave was forced to concen-
trate and pass through the surface layers that 
have higher density than the middle layer. In 
addition, the hole/thickness ratio is also im-
portant in wave energy transfer.

For 1.9-cm-thick samples, Fig. 10 shows 
the amplitude of the frequency spectrum for a 
typical sample with a hole through its center. 
A slight decrease was expected because of the 
energy loss of the stress wave due to the hole. 
However, the 1.9-cm-thick samples were less 
affected than were the 1.25-cm-thick samples 
because less of the section surface material 
was removed.

Figure 11 shows the measurement error 
obtained when the neural network pattern 
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Table 3. Analysis of measurement errors before and after drilling a hole in medium-density 
fiberboard samples
	 Thickness		  Number	 Mean	 Std.	 Tukey
	 (cm)				    deviation	 grouping
	 1.25	 Before drilling the hole	 25	 4.05×10-5	 2.00×10-6	 A
	p-value = 1.0E-4	 After drilling the hole	 25	 4.35×10-5	 1.63×10-6	 B
	 1.9 	 Before drilling the hole	 25	 4.00×10-5	 3.95×10-6	 A
	p-value = 1.0E-4	 After drilling the hole	 25	 4.04×10-5	 3.99×10-6	 B
Alpha = 0.05.
Means with the same letter do not significantly differ.

Fig. 11. Average measurement errors of undamaged neural network patterns of various 
samples damaged with a hole of (a) 1.25- and (b) 1.9-cm-thick sample.

obtained from undamaged samples was com-
pared to the stress waves from samples with a 
hole. Each bar is the average measurement er-
ror from 5 replicates. These results were sta-
tistically compared, and the results are shown 
in Table 3. It is evident that the measurement 
error of the peak magnitude of undamaged 

sample frequency spectra was lower than that 
of samples containing a hole.

CONCLUSIONS

The feasibility of using a neural net-
work to detect the structural damage in MDF 

Fig. 9. Typical stress wave frequency 
spectra before and after drilling a hole 
(1.25-cm-thick sample).

Fig. 10. Typical stress wave frequency 
spectra before and after drilling a hole 
(1.9-cm-thick sample).
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was explored using a feed-forward back-
propagation neural network. The network not 
only recognized the undamaged frequency 
patterns, but usually indicated the pattern 
variation in the frequency spectra as damaged 
types. 

The neural network was trained to rec-
ognize undamaged samples and those with 
grooves in the surface or a hole through the 
center of the sample. The results of the ex-
periments are very encouraging. The research 
provides the following advantages.
1.	The neural network can be trained with a 

limited number of frequency spectra. 
2.	The learned neural network can also detect 

changes in the frequency spectra due to 
cutting a groove and drilling a hole in the 
MDF samples.

The feed-forward back-propagation 
neural network is one of the first types of 
networks developed and has been the most 
widely applied network to date. These obser-
vations are currently being investigated for 
detection of damaged structures.
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